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Introduction 

 

 

"Theory or 

Practice? But 

why or? 

Theory and 

Practice. This 

is the Ars 

Mathematica

". —Alfréd 

Rényi 

 

The word geometry means earth measurement. As far as we know the ancient Egyptians were the first people to 

do geometry from absolutely practical points of view. The historian Herodotus relates that in 1300 BC "if a man 

lost any of his land by the annual overflow of the Nile he had to report the loss to Pharao who would then send 

an overseer to measure the loss and make a proportionate abatement of the tax" [1]. The Greeks were the first to 

make progress in geometry in the sense that they made it abstract. They introduced the idea of considering 

idealized points and lines. Using Plato's words the objects of geometric knowledge are eternal. The Greek 

deductive method gives a kind of answer to the question how to obtain information about this idealized world. It 

was codified by Euclid around 300 BC in his famous book entitled Elements which is a system of conclusions 

on the bases of unquestionable premisses or axioms. The method needs two fundamental concepts to begin 

working: undefined terms such as points, lines, planes etc. and axioms (sometimes they are referred as premisses 

or postulates) which are the basic assumptions about the terms of geometry. 

The material collected here try to fit the different requirements coming from the different traditional points of 

view. One of them wants to solve problems in practice, the other wants to develop an abstract theory 

independently of the empirical world. Although it is hard to realize the equilibrium of different requirements 

(lecture vs. seminar or theory vs. practice) Alfréd Rényi's Ars Mathematica [2] gives us a perfect starting point: 

lectures and seminars, theory and practice. 

The first chapter is devoted to general computational skills related to numbers, equations, system of equations, 

functions etc. These tools and the related methods are widely used in mathematics. In chapter 3 we imitate the 

deductive method by collecting basic facts in geometry. Some of them are axioms in the strict sense of the word 

such as the axioms of incidence, parallelism, measurement axioms and congruence axiom. We have another 

collection of facts which are not (or not necessarily) axioms. They are frequently used in geometric 

argumentations such as the parallel line intersecting theorem or the basic cases of the congruence and the 

similarity of triangles. In some of these cases the proof is available later on a higher stage of the theory. Chapter 

4 is devoted to the investigation of triangles which are the fundamental figures in Euclidean geometry because 

quadrilaterals (chapter 7) or polygons (chapter 9) are made up of finitely many triangles and most of not 

polygonal shapes like circles (chapter 10) can be imaged as limits of polygons. 

Each chapter includes exercises too. Most of them have a detailed solution. Exercises in separated chapters give 

an overview about the previous chapter's material. The classical problems (chapter 6 and chapter 13) illustrate 

how to use geometry in practice. They also have a historical character like the problem of the tunnel (section 

6.1) or how far away is the Moon (section 6.3). 

Figure 0.1. Alfréd Rényi (1921-1970). 
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Chapter 1. General computational 
skills 

1. 1.1. Numbers 

Numbers are one of the most typical objects in mathematics. 

1.1. 1.1.1. Natural numbers 

To develop the notion of numbers the starting point is formed by the so-called natural numbers characterized by 

a set of axioms due to the 19th century Italian mathematician Guiseppe Peano. The Peano axioms define the 

arithmetical properties of natural numbers, usually represented as a set 

 

The Peano's axioms are formulated as follows. 

P1. 1 is a natural number (the set of natural numbers is non-empty). 

The naturals are assumed to be closed under a single-valued successor - function S(n)=n+1. 

P2. S(n) belongs to N for every natural number n. 

Peano's original formulation of the axioms used the symbol 1 for the "first" natural number although axiom P1 

does not involve any specific properties for the element 1. The number 2 can be defined as 2=S(1) and so on: 

3=S(2), 4=S(3), ... . The next two axioms define the properties of this representation. 

P3. There is no any natural number satisfying S(n)=1. 

P4. If S(m)=S(n) then m=n. 

These axioms imply that the elements 1, 2=S(1), 3=S(2), ... are distinct natural numbers but we need the so-

called axiom of induction to provide that this procedure gives all elements of the naturals. 

P5. If K is a set such that 1 is in K and for every natural number n, n is in K implies that S(n) is in K then K 

contains every natural number. 

1.2. 1.1.2. Integers 

Equation 5+x=2 has no natural solution. Let m and n be natural numbers. Equations of the form 

 

without solutions among naturals lead us to new quantities called integers: 

 

Any integer corresponds to a pair (m,n) of naturals by equation 1.1. Two equations are called equivalent if they 

have exactly the same solutions. If we add the sides of the equations m+x=n and n'=m'+x then m'+n+x=m+n'+x. 

Therefore 

 

is a direct consequence of the formal equivalence. The pairs (m,n) and (m',n') satisfying equation 1.2 represent 

the same integer. In case of (5,2) this new quantity will be written as - 3. 

Figure 1.1. Graphical representation of integers. 
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1.3. 1.1.3. Rationals 

Equation 5x=2 has no integer solutions. Let m 0 and n be integers. Equations of the form 

 

without solutions among integers lead us to new quantities called rationals: 

 

Any rational number corresponds to a pair (m,n) of integers by equation 1.3. Two equations are called 

equivalent if they have exactly the same solutions. If we multiply the sides of the equations mx=n and n'=m'x 

then m'nx=mn'x. Therefore 

 

is a direct consequence of the formal equivalence. The pairs (m,n) and (m',n') satisfying equation 1.4 represent 

the same rational number. In case of (5,2) this new quantity will be written as 2/5. 

1.4. 1.1.4. Exercises 

Exercise 1.1. Calculate the length of the diagonal of a square with side of unit length. 

 

Hint. Using Pythagorean theorem we have that the diagonal is a number satisfying equation . 

Exercise 1.2. Prove that  is not a rational number. 
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Hint. Suppose in contrary that 

 

where n and m are integers. Taking the square of both sides we have that 

 

where the left hand side contains an odd power of  in the prime factorization which contradicts to the even 

power on the right hand side. Therefore the starting hypothesis is false. 

Figure 1.2. The rootspiral. 

 

1.5. 1.1.5. Irrational numbers 

Definition. Numbers which can not be written as the ratio of integers are called irrational. The set of real 

numbers R consists of the rational and the irrational numbers. 

Irrational numbers can be imaged as limits of sequences of rational numbers; see subsection 1.3.1. 

1.6. 1.1.6. Complex numbers/vectors 

To develop the notion of numbers the next level is the complex numbers which can be interpreted as vectors or 

elements in the Euclidean plane. The algebraic motivation is to provide solutions of the equation . 

2. 1.2. Exercises 

In what follows we shall use the notation n+1 instead of S(n) for the sake of simplicity. 

Exercise 1.3. Using induction prove that 

 

 

Solution. We can check directly that if n=1 then 
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i.e. equation 1.5 is true. Suppose that n satisfies equation 1.5, i.e. 

 

and prove that 

 

Let us start from the left hand side. Using the inductive hypothesis we have that 

 

Therefore n+1 also satisfies equation 1.5. The final conclusion is that the set of natural numbers satisfying 

equation 1.5 covers N. 

Remark. As we can see induction is a useful general method to prove statements related to naturals. One of its 

weakness is that we have to guess what to prove. 

Exercise 1.4. Prove the so-called Gaussian formula 1.5 without induction. 

 

Solution. Let 

 

be the partial sum of the first n natural number. Taking the sum of equations 

 

and 

 

we have that 

 

and the Gaussian formula follows immediately. 

Exercise 1.5. Using induction prove that 

 

 

Solution. Follow the steps as above to prove equation 1.6. If n=1 then we can easily check that 

 

i.e. equation 1.6 is true. Suppose that n satisfies equation 1.6, i.e. 
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and prove that 

 

Let us start from the left hand side. Using the inductive hypothesis we have that 

 

 

 

 

 

as was to be proved. 

Exercise 1.6. Using induction prove that 

 

 

Solution. If n=1 then 

 

and . The expression  can be written into the form 

 

where, by the inductive hypothesis, each term can be divided by 3. 

Exercise 1.7. Prove that the solutions of the equations 

 

are irrationals. 

 

Solution. Let p be an arbitrary prime number and suppose in contrary that 

 

where n and m are integers. Taking the square of both sides we have that 

 

where the left hand side contains an odd power of  in the prime factorization which contradicts to the even 

power on the right hand side. Therefore the starting hypothesis is false. 

Exercise 1.8. Prove that the sum and the fraction of rational numbers are rational. 
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Exercise 1.9. Is it true or not? The sum of a rational and an irrational number is 

 

• rational. 

• irrational. 

Solution. Using the result of the previous exercise the assumption 

 

gives a contradiction. One can easily generalize the argument for the sum of any rational and irrational number. 

The method is called indirect proof. 

Exercise 1.10.  Find irrational numbers a and b such that 

 

• a+b is rational, 

• a+b is irrational, 

• a/b is rational, 

• a/b is irrational. 

Solution. If 

 

then the sum of a+b is obviously rational. Let 

 

If 

 

and 

 

which means that 

 

i.e. 

 

This means that r can not be a rational number. If 

 

then its ratio is obviously rational. Finally, if 

 

then 
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which is obviously irrational. 

Exercise 1.11. Prove that x=2+3i satisfies equation 

 

 

Solution. Since the imaginary unit is the formal solution of equation  we have that 

 

 

using the principle of permanence: keep all the algebraic rules of calculation with reals. 

3. 1.3. Limits 

In this section we illustrate how irrational numbers can be interpreted as limits of sequences of rational numbers. 

Taking the limit is one of the most important operations in mathematics. It is used in the development of the 

notion of numbers, the theory of length, area and volume of general shapes (curves, surfaces and bodies) and so 

on. Here we apply only a kind of intuition to create limits without precise definitions. 

3.1. 1.3.1. Approximation of irrational numbers 

It can be easily seen that 

 

Consider the midpoint 

 

of the interval . Taking the square of the corresponding sides it can be proved that 

 

and we have a better approximation by the midpoint 

 

Taking the square of the corresponding sides again it can be proved that 

 

and the midpoint 

 

is a better approximation of . The method is similar to looking for a word in a dictionary. The basic steps are 

• open the dictionary in a random way (for example open the book in the middle part) 
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• compare the word we are looking for with the initial letter of the words on the sheet. 

Every time we bisect the dictionary before running the algorithm again. The process is not exactly the same but 

we use the same philosophy to solve the problem of approximation of . The most essential difference is that 

the method of finding  is not finite: we always have rational numbers which means that we could not find the 

exact value of  among the members of the sequence , , , ... But the errors can be estimated by 

decreasing values as follows: 

 

 

In a similar way 

 

In general 

 

Therefore we can be as close to  as we want to. In other words the sequence , , , ... tends to  and this 

number can be interpreted as the limit of a sequence of rational numbers. 

Figure 1.3. Approximation of square root 2. 

 

Remark. In what follows we present a MAPLE procedure for the approximation of the square root of naturals 

as we have seen above: let  be a given natural number. We are going to approximate the square root of  by 

using the basic step  times. The name of the procedure is 

 

At first we should find lower and upper bounds 

 

as follows: 
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This means that if the actual value of the variable  satisfies the inequality  then we increase the value of 

the variable by adding one as far as possible. Finally "a" takes the last value for which the inequality  is 

true. The upper bound is created in a similar way: 

 

 

 

As the next step we give the initial value of a new variable 

 

and we use a "for" loop to take the half of the enclosing intervalls n times: 

 

 

 

 

 

 

 

 

 

 

 

The figure shows how the procedure is working in a standard Maple worksheet environment. 

Figure 1.4. A MAPLE procedure. 
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3.2. 1.3.2. The problem of the shortest way 

One of the most important basic fact in geometry is the so-called triangle inequality 

 

to express a more general geometric principle. It says that the shortest way between two points is the straight 

line. The question is how to derive this principle from inequality 1.8 in general. The first step is the 

generalization of the triangle inequality. Using a simple induction we can prove polygonal inequalities 

 

In general 

 

for any natural number . Now image an "arc" from A to C. If the arclength is understood as the limit of 

lengths of inscribed polygonal chains in some sense then we have that the shortest way between two points is 

the straight line. 

3.3. 1.3.3. The area of the unit circle 

Everybody knows that the area of a circle with radius r is . If we have a unit circle then the area is just . 

How can we calculate the value of ? 

The earliest known textually evidenced approximations of  are from around 1900 BC. They are found in the 

Egyptian Rhind Papyrus 
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and on Babylonian tablets 

 

The Indian text Shatapatha Brahmana gives  as 339/108. Archimedes (287 - 212 BC) was the first to estimate 

 rigorously. He realized that its magnitude can be bounded from below and above by the area of inscribing and 

circumscribing regular polygons. For example we can inscribe in the circle a regular hexagon made up of six 

disjoint equilateral triangles of side 1. The area of each triangle is 3/(4 ) by Héron's formula, so the area of 

the hexagon is 

 

The area of the circle should be obviously greater than this value. If we circumscribe a regular hexagon around 

the unit circle then the area can be estimated from above. The area of the circle should be obviously less than the 

area of the circumscribed regular hexagon of side 2/ : 

 

and so on. Around 480 Zu Chongzhi demonstrated that . He also showed that 

. 

The next major advances in the study of  came with the development of infinite series and subsequently with 

the discovery of calculus/analysis, which permit the estimation of  to any desired accuracy by considering 

sufficiently many terms of a relevant series. Around 1400, Madhava of Sangamagrama found the first known 

such series: 

 

This is known as the Madhava-Leibniz series or Gregory-Leibniz series since it was rediscovered by James 

Gregory and Gottfried Leibniz in the 17th century. Madhava was able to estimate the value of  correctly to 11 

decimal places. The record was beaten in 1424 by the Persian mathematician, Jamshid al-Kashi by giving an 

estimation that is correct to 16 decimal digits. The accuracy up to 35 decimal digits was due to the German 

mathematician Ludolph van Ceulen (1540-1610). Another European contribution to the problem is the formula 

 

found by Francois Viéte in 1593. Formula 1.9 will be derived in section 10.3 by using inscribed regular n-gons 

in the unit circle. 

4. 1.4. Exercises 

Exercise 1.12. Compute the number of steps for the approximation of  with error less than . 

 

Solution. We have to solve the inequality 

 

Equivalently: . To solve this inequality we use the so-called logarithm to have that . 

Since  it follows that 
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steps are enough to approximate  with error less that  which is just the measure of the unit conversion 

between meter and Angstrom related to atomic-scale structures. 

Exercise 1.13. Find a sequence of rational numbers to approximate . 

 

Solution. Using the estimations 

 

we have 

 

as the first member of the approximating sequence. Since 

 

it follows that 

 

Repeating the basic steps of the dictionary method we have 

 

 

and 

 

 

and so on. 

Exercise 1.14. Consider the iterative sequence 

 

i.e. 

 

Prove that 

 

for any element of the sequence. 

 

Solution. It is clear that the inequality is true for n=1. Using a simple induction 
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Exercise 1.15. Find positive integer solutions for the equation 

 

 

Solution. Using the formula for computing the roots of a quadratic equation 

 

Therefore 1+4n must be an odd square number: 

 

 

which means that n must be of the form n=k(k+1), where k is an arbitrary positive integer. In this case the 

positive root of the equation is m=k+1. For example if k=1 then n=2 and m=2. Further possible solutions are 

n=12 and m=4 or n=20 and m=5 under the choices of k=3 or k=4. 

 

Exercise 1.16. Consider the iterative sequence 

 

i.e. 

 

Prove that 

 

for any element of the sequence. 

 

Solution. It is clear that the inequality is true for n=1. Using a simple induction 

 

Exercise 1.17. Consider the iterative sequence 

 

i.e. 

 

Prove that 
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for any element of the sequence. 

 

Solution. It is clear that the inequality is true for n=1. Using a simple induction 

 

Remark. The upper bounds in the previous exercises provide that the sequences have finite limits. In case of the 

sequence 

 

we have that the limit must satisfy the equation 

 

and, consequently, it is just 4. 

Exercise 1.18. Find the limit of the sequence 

 

 

Solution. As we have seen above the sequence is bounded by 2 from above. This means that we have a finite 

limit satisfying the equation 

 

Therefore 

 

which means that  or - 1 but the negative value can be obviously omitted. 

Exercise 1.19. Find the limit of the sequence 

 

 

Solution. As we have seen above the sequence is bounded by 5 from above. This means that we have a finite 

limit satisfying the equation 

 

Therefore 

 

which means that  or - 4 but the negative value can be obviously omitted. 

Exercise 1.20. Prove that 
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Solution. It can be easily derived by direct calculation: 

 

Exercise 1.21. Prove that 

 

 

Solution. It can be easily derived by direct calculation: 

 

The formulas involving explicite powers can be given by the help of direct calculations. 

Exercise 1.22.  Prove that for any natural power 

 

 

Solution. Let 

 

be the partial sum of the powers. Then 

 

 

as was to be proved. 

Remark. Use the procedure of the induction to prove the statement in Exercise 1.22 [18]. 

Solution. 

 

Exercise 1.23. Calculate the sum of the series 

 

 

Hint. Using the previous result with  we have that 

 

Remark. We can image the sum of the geometric series 

 

as taking a 2 units long walk in such a way that each sub - walk takes the half of the distance from the staring 

point to the end. 

5. 1.5. Functions 

xca_1_4_11_
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The approximation of square root 2 can be interpreted in the following way. 

 

Besides the tabular form graphical representation is widely used. Actually this is a direct method to realize 

relationships and tendencies among data items at a glance. 

Figure 1.5. Exponentially decreasing tendency. 

 

5.1. 1.5.1. Exponentials 

Exponentials are typical in mathematical modeling of growing without constraints (see eg. cell division, family 

tree). We also know that each radioactive isotope has its own characteristic decay pattern. Its rate is measured in 

half - life. The half - life refers to the time it takes for one - half of the atoms of a radioactive material to 

disintegrate. Half - lives for different radioisotopes can range from a few microsecond to billions of years. 

 

5.2. 1.5.2. Trigonometric functions 

Another important type of functions are trigonometric functions; see section 4.5. 
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5.3. 1.5.3. Polynomials 

Finally we mention polynomial functions of the form 

 

The most important special cases are n=1 (lines) and n=2 (parabolas). Polynomials behave like numbers from 

some points of view. We can add or multiply them and we can divide two polynomials with each other too. 

 

Therefore 

 

An important example on a polynomial tendency is the kinematic law for the distance travelled during a 

uniform acceleration starting from rest. It is proportional to the square of the ellapsed time. This is the situation 

in case of falling bodies investigated by Galileo Galilei. If we are interested in the distance travelled by a falling 

body as a function of the travelling time it is relatively hard to create an appropriate experimental environment 

for measuring. It is more reasonable to measure the travelling time as the function of the distance. In other 

words we are interested in the inverse relationship (inverse function). To create a comfortable experimental 

situation we can use a slope to ensure a travel during a uniform acceleration starting from rest. A simple scale 

can be given by using the mid-point technic along the slope. Theoretically we have the formula 

 

to give the travelling time as a function of the distance s along the slope; the constant 

 

is related to the angle of the slope and the gravitational acceleration g. To return to the original problem we need 

the inverse of the function f. Formally speaking we want to express s in terms of t=f(s): 

 

and, consequently, the inverse function is working as 

 

on the domain of the non-negative real numbers. Geometrically we change the role of the coordinates x and y in 

the coordinate plane. Therefore the graphs of a function and its inverse is related by the reflection about the line 

y=x as we can see in the next figure for the exponential and the logarithmic functions. 

6. 1.6. Exercises 

Exercise 1.24. Suppose that you have 10 grams of Barium - 139. After 86 minutes, half of the atoms in the 

sample would have decayed into another element called Lanthanum - 139. After one half - life you would have 

5 grams Barium - 139 and 5 grams Lanthanum - 139. After another 86 minutes, half of the 5 grams Barium - 

139 would decay into Lanthanum - 139 again; you would now have 2.5 grams of Barium - 139 and 7.5 grams 

Lanthanum - 139. How many time does it take to be Barium - 139 less than 1 gram? 



 General computational skills  

 21  
Created by XMLmind XSL-FO Converter. 

 

 

Solution. We have to solve the inequality 

 

Therefore  minutes is enough to be Barium - 139 less than 1 gram. 

Exercise 1.25. Sketch the functions  and  in a common Cartesian coordinate system. 

 

Figure 1.6. The exponential function and its inverse. 

 

Exercise 1.26. Prove that  is irrational. 

 

Solution. Suppose, in contrary that 
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where n and m  are integers. Using that  we have 

 

By the definition of the logarithm this means that  which is obviously impossible. 

Exercise 1.27. Transfer the expression  to the canonical form 

 

and compute the minimum value of the function. 

 

Solution. It can be easily seen that 

 

 

i.e. the minimum value is just  attained at . 

Exercise 1.28. Prove the formula 

 

for the roots of the equation 

 

by using the canonical form of a quadratic function. 

 

Hint. Consider the function 

 

Its canonical form is 

 

which implies by taking the equation f(x)=0 that 

 

Therefore 

 

provided that the discriminant  is non-negative. 

Exercise 1.29. Conclude Viéte's formulas 
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Exercise 1.30. Find the maximum amount of square footage we can enclose in a rectangle using a fence with 

128 feet. 

 

Solution. Let x and y be the sides of a rectangle. To find the maximum of the product xy subject to the equality 

constrain 2(x+y)=128 consider the function 

 

Substituting y=64 - x we can reduce the number of variables: 

 

The maximum area is just 1024 attained at x=32 which is just the case of a square. 

Exercise 1.31. The following table shows the average highs of temperature measured on 15th of each month in 

New York City [3]. Using graphical representation find the rule of the average highs. What about the 

temperature on 30th of October? 

 

 

Solution. Consider the months as independent variables x=2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. For the sake of 

simplicity we illustrate the corresponding high temperatures as T=4, 5, 6.2, ... and so on. As it can bee seen they 

form a parabolic arc with canonical form 

 

Figure 1.7. The graphical representation of the high temperatures. 



 General computational skills  

 24  
Created by XMLmind XSL-FO Converter. 

 

To compute the parameter ”a” we can use the following substitutions: 

 

 

 

and so on. The following table shows the collection of the possible values of the parameter "a". 

 

Exercise 1.32. Calculate the missing values of the parameter. 

 

Solution. Using the equations 
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we have the values a= - 0.21, - 0.18 and - 0.18. Therefore the parameter ”a” is about - 0.2. A reasonable model 

to compute the average high temperature is 

 

30/October corresponds the value x=10.5. Therefore 

 

Fahrenheit. 

Exercise 1.33. Find the inverse of the function 

 

 

Solution. Express x in terms of y=f(x): 

 

which means that the inverse function is working as 

 

Exercise 1.34. Find the inverse of the function 

 

on the domain of the non-negative real numbers. 

 

Solution. The formal method gives that 

 

and, consequently, the inverse function is working as 

 

Exercise 1.35. Find the inverse of the function 

 

 

Solution. The formal method gives that 
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Therefore 

 

and the domain of the inverse function does not contain the value y=3. 

Exercise 1.36. Find the domains of the functions 

 

 

Solution. The domain of the function f is the set of reals except the roots x=0 or 1 of the denominator. In case of 

function g we need the set of reals satisfying 

 

i.e. the domain is the set of reals less or equal than 5. Finally we have to solve the inequality 

 

The left hand side is non-negative if and only if 

 

or 

 

Therefore 

 

Exercise 1.37. Find the domains of the functions 

 

 

Solution. The domain of the function f is the set of reals except - 3. For the function g we have 

 

Finally we have to solve the inequality 

 

The left hand side is non-negative if and only if 

 

or 

 

Therefore 
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Exercise 1.38. Express the numbers 

 

in terms of  

 

Solution. Since 

 

we have that 

 

and 

 

Exercise 1.39. Solve the following equations 

 

 

Solution. To solve the first equation observe that 

 

 

In a similar way 

 

 

Finally 

 

 

7. 1.7. Means 

In practice estimations are often more important than the exact values of quantities. Lots of numerical values are 

frequently substituted with only one distinguished quantity as we have seen above in Exercise 1.31 [23]. There 

are several reasons why to use average (mean, mode, median, ecpectable value etc.) in mathematics. An average 

is a measure of the middle or typical value of a data set. The general aim is to accumulate the information or to 

substitute more complicated mathematical objects with relatively simpler ones. In what follows we summarize 

some theoretical methods to create an average. 

• The arithmetic mean of a finite collection of data is 

 

xca_mean1_
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• In case of nonnegative numbers we can form the so-called geometric mean 

 

• The harmonic mean of the data set is 

 

Remark. Using Thales theorem we can interpret the arithmetic mean of x=AF and y=FB as the radius of the 

circumscribed circle of a right triangle with hypothenuse AB. The height is just the geometric mean of x and y. 

Under the choice x=1 and y=n this gives an alternative method to construct the root of any natural number n by 

ruler and compass. On the other hand figure 1.8 shows that 

 

for two variables. 

Figure 1.8. Arithmetic vs. geometric means. 

 

In many situations involving rates and ratios the harmonic mean provides the truest average. If a vehicle travels 

a certain distance d at speed 60 kilometres per hour and then the same distance again at speed 40 kilometres per 

hour then its average speed is the harmonic mean of 60 and 40, i.e. 

 

In other words the total travel time is the same as if the vehicle had traveled the whole distance at speed 48 

kilometres per hour because 

 

and thus 

 

The same principle can be applied to more than two segments of the motion: if we have a series of sub - trips at 

different speeds and each sub - trip covers the same distance then the average speed is the harmonic mean of all 

the sub - trip speeds. After a slight modification we can give the physical interpretation of the arithmetic mean 



 General computational skills  

 29  
Created by XMLmind XSL-FO Converter. 

too: if a vehicle travels for a certain amount "t" of time at speed 60 and then the same amount of time at speed 

40 then the average speed is just the arithmetic mean of 60 and 40, i.e. 

 

In other words the total distance is the same as if the vehicle had traveled for the whole time at speed 50 

kilometres per hour because 

 

and thus 

 

8. 1.8. Exercises 

Exercise 1.40. Find the arithmetic mean of the possible values of the parameter "a" in Exercise 1.31 [23]. 

 

Solution. 

 

 

Exercise 1.41. Prove that for any pair of positive real numbers x and y 

 

 

Solution. At first we prove that for any pair of non-negative numbers x and y 

 

Taking the square of both sides we have that 

 

and, consequently, 

 

 

which is obviously true. If a=1/x and b=1/y then 

 

which means that 

 

xca_mean1_
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as was to be proved. 

Exercise 1.42. Suppose that you want to create a rectangular-shaped garden with area 1024 square footage. How 

many feet in length you need to fence your garden? 

 

Hint. The problem is to minimize the perimeter among rectangles with area 1024. Let x and y be the sides of a 

rectangle. To find the minimum of the perimeter 2(x+y) subject to the equality constrain xy=1024 introduce the 

function 

 

Substituting y=1024/x we can reduce the number of variables: 

 

The relationship between the arithmetic and the geometric means shows that 

 

and equality happens if and only if x=32. This is the case of the square. 

Exercise 1.43. Formulate the physical principle for the arithmetic mean. 

 

Solution. If we have a series of sub - trips at different speeds and each sub - trip takes the same amount of time 

then the average speed is the arithmetic mean of all the sub - trip speeds. 

9. 1.9. Equations, system of equations 

The mathematical formulation of problems often gives a single equation or system of equations (see e.g. 

coordinate geometry). It is important to isolate relevant information: 

A rectangular box with a base 2 inches by 6 inches is 10 inches tall and holds 12 ounces of breakfast cereal. The 

manufacturer wants to use a new box with a base 3 inches by 5 inches. How many inches tall should be in order 

to hold exactly the same volume as the original box? 

 

The only theoretical fact we need to solve the problem is that the volume of a rectangular box is just the product 

of the area of the base and the tall. Therefore we can write the equation 

 

where m denotes the unknown tall (height) of the new box. We have that m=8. Quantities we are looking for 

may have a more complicated relationship with the given data. Sometimes we should write more than one 

relationships (together with new auxiliary variables) to compute the missing one. 

10. 1.10. Exercises 

Exercise 1.44. In rectangle ABCD, side AB is three times longer than BC. The distance of an interior point P 

from the vertices A, B and D are 
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respectively. What is the area of the rectangle? 

 

Figure 1.9. Exercise 1.44 [30]. 

 

Hint. Using orthogonal projections of the interior point P to the sides of the rectangle we can use Pythagorean 

theorem three times: 

 

 

 

Since AB=3AD we have three equations for the quantities x=AD, y=AQ and z=AR. Namely 

 

 

 

We have that 

 

and 

 

Therefore 

 

xca_1_10_1_
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and the first equation gives that 

 

where a= . From here 

 

 

Finally 

 

which means that 

 

If a=2 then we have that 

 

which is impossible. Therefore 

 

Note that there is no need to compute x because the area of the rectangle can be given as . 

Remark. Systems containing quadratic equations are typical in coordinate geometry: the intersection of a line 

and a circle or the intersection of two circles. 
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Chapter 2. Exercises 

1. 2.1. Exercises 

Exercise 2.1. Without calculator find the values of 

 

 

 

 

Solution. Using power law identities 

 

Secondly 

 

 

In the same way 

 

 

and, consequently, 

 

To compute the exact values of the roots note that 

 

Therefore 

 

In a similar way 

 

 

Therefore 

 

Observe that 
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and thus 

 

 

Exercise 2.2. Solve the equations: 

 

 

 

Solution. The first equation says that 

 

i.e. 3x=21/12 and thus x=7/12. Secondly 

 

Using the technic of division of polynomials it can be easily seen that if a polynomial has an integer root m then 

it must divide the constant term. We are going to guess at least one of the roots of the polynomial by checking 

the divisors of 24. This results in the root m=2. Using polynomial division again 

 

To finish the solution we solve the quadratic equation 

 

too. We have 

 

In case of the last equation we use the identity  to conclude that 

 

which results in a quadratic equation. 

Exercise 2.3. Prove that 

 

 

Solution. Taking the square of both sides systematically 
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which is obviously true. 

Exercise 2.4. Which number is the bigger? 

 

 

Solution. Using that 

 

it follows that the second number is the bigger one. In a similar way 

 

and  is bigger than the product . Since 

 

it is enough to compare the numbers 

 

Here 

 

which means that 

 

Exercise 2.5. Solve the following systems of equations 

 

 

and 

 

 

 

Solution. In terms of coordinate geometry the solution of the first system of equations gives the common point 

of two lines. From the first equation we can write y in terms of x as follows 
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Substituting this expression into the second equation we have that 

 

 

 

Finally 

 

and, consequently, 

 

To solve the second system of equations it seems to be more convenient to express  from the first equation as 

follows 

 

By substitution 

 

 

which means that 

 

If  then the corresponding values of x are . If  then there is no any corresponding value of 

x. 

Exercise 2.6. Using induction prove that 

 

 

Solution. In case of n=1 the statement is obviously true. Using the inductive hypothesis 

 

 

 

as was to be proved. 

Exercise 2.7. Compute the values of 
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and sketch the graph of the function 

 

 

Solution. We have 

 

 

 

To sketch the graph of the function consider the canonical form 

 

Therefore the zeros of the function satisfy the equation 

 

which means that  and . The maximum value is just 2 attained at the arithmetic mean of the 

zeros: 

 

Figure 2.1. Exercise 2.7 [36]. 

 

xca_2_1_7_
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Exercise 2.8. Sketch the graph of the function . 

 

Solution. To sketch the graph of the function consider the canonical form 

 

The zeros of the function satisfy the equation 

 

which means that  and . The minimum value is just - 1 attained at the arithmetic mean of the 

zeros: 

 

Figure 2.2. Exercise 2.8 [38]. 

 

Exercise 2.9. Find all integer roots of the equation  and perform the division 

 

 

Solution. Any integer root must be a divisor of the constant term. Therefore the possible values are 

 

Substituting these values as x we have that the integer roots are x=1 or - 6. Finally 

 

xca_2_1_8_
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Therefore 

 

The missing roots are 

 

i.e.  and . 

Exercise 2.10. Solve the inequality 

 

 

Solution. The standard way of solving quadratic inequalities consists of three steps. At first we determine the 

roots of the quadratic polynomial if exist: 

 

i.e.  and . Secondly we sketch the graph of the function. Since the coefficient of the term of 

highest degree is positive the corresponding parabola is open from above (in other words it has a minimum 

attained at the arithmetic mean of the roots). Finally the solutions are - 2 < x < 3. 

Exercise 2.11. Solve the inequality 

 

 

Figure 2.3. Exercise 2.10 [39]. 

 

xca_2_1_10_
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Chapter 3. Basic facts in geometry 

Using Plato's words "the objects of geometric knowledge are eternal". The Greek deductive method gives a kind 

of answer to the question how to obtain information about this idealized world. It was codified by Euclid around 

300 BC in his famous book entitled Elements which is a system of conclusions on the bases of unquestionable 

premisses or axioms. In terms of a modern language the method needs two fundamental concepts to begin 

working: undefined terms such as points, lines, planes etc. and axioms (sometimes they are referred as premisses 

or postulates) which are the basic assumptions about the terms of geometry. Here we present a short review of 

axioms in Euclidean plane geometry to illustrate its fundamental assumptions, methods and specific points of 

view. 

1. 3.1. The axioms of incidence 

The axioms of incidence. 

• Through any two distinct points there is exactly one line. 

The basic terms (like points, lines etc.) of the axiomatic system are undefined. If we do not know what they 

mean then there is no point in asking whether or not the axioms are true. Following one of the most expressive 

examples in [1] suppose that alien beings have landed on Earth by flying saucer and their leader tells you that 

through any distinct blurgs there is exactly one phogon. Unless you know what a blurg and a phogon you will 

have no way of telling whether or not this statement is true. On the other hand there may be many different 

interpretations of the undefined terms such as points, lines etc. in an axiomatic system for geometry. An 

interpretation which makes all the axioms true is called a model for the axiomatic system; because theorems are 

all deduced logically from the axioms they will be true in any model as well. To understand the role of models 

we can consider the classical coordinate geometry as one of the model for the Euclidean plane geometry. Points 

are interpreted as pairs of real numbers (coordinates) and lines are interpreted as point - sets satisfying equations 

of special type. In this interpretation the first axiom of incidence can be checked in the following way: consider 

the points ( , ) and ( , ) in the plane; the line passing through these points is just the set of points whose 

coordinates satisfy the equation 

 

provided that the first coordinates of the given points are different. In case of  the equation of the 

corresponding line is just x= constant. 

Remark. As we have seen above points can be interpreted as pairs of real numbers. The lines correspond to 

more complicated algebraic objects called equations. This is the reason why such a model for the Euclidean 

geometry is called analytic. It can be easily generalized by admitting more than two coordinates. This results in 

the geometry of higher dimensional Euclidean spaces. To illustrate what happens note that lines in the space 

have system of equations of the form 

 

or 

 

in case of  and so on. 

• Any line contains at least two distinct points and we have at least three distinct points which do not lie on the 

same line. 

The statement is labelled as the dimension axiom because it says essentially that lines are one-dimensional and 

the plane is of dimension two. 

Definition. Points lying on the same line are called collinear. 
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2. 3.2. Parallelism 

Finally we present the most famous axiom of Euclidean plane geometry which can be expressed in terms of 

incidence. This is called Euclid's parallel postulate. 

Definition. Two lines in the plane are parallel if they have no any point in common or they coincide. 

• Let l be a line and P be a point in the plane; there is one and only one line e that passes through P and parallel 

to l. 

Theorem 3.1. If l is parallel to e and e is parallel to m then l is parallel to m. 

Proof. Suppose that l and m has a point P in common. Since both of the lines are parallel to e we have by the 

parallel axiom that l=m. Otherwise they are disjoint. 

 

Remark. Definitions are shortcut notations from the logical point of view. Theorems are deduced logically from 

the axioms or other theorems which has been proved. 

3. 3.3. Measurement axioms 

Another important question is how to measure distance between points in the plane. Like points, lines etc. the 

absolute distance can also be a new undefined term in our geometry. The main question is not what is the 

distance but how to measure the distance. The physical instrument to realize distance measurements is a ruler. 

Its abstract (idealized) version is called the ruler axiom. 

• Let l be an arbitrary line in the plane. A ruler for l is a one-to-one correspondence between the points in l and 

the set of real numbers in such a way that the distance between the points A and B in l is just the absolute 

value of the difference of the corresponding reals: if A corresponds to the real number a and B corresponds to 

the real number b then 

 

The ruler axiom postulates the existence of such a ruler for any line in the plane. 

By the help of a ruler we can use the standard ordering among real numbers to define segments and half - lines. 

Let A and B be two distinct points in the plane and consider the line l passing through the given points. If a < b 

then the straight line segment joining A and B is defined as 

 

where the points correspond to the real numbers a, b and c under a ruler. The half - line starting from A to B is 

created by cutting the points with coordinates c < a. Segments and half - lines correspond to intervals of the 

form [a,b] where the starting or the end point can be positioned at plus or minus infinity. 

There are several ways of introducing the concept of angle in geometry. Here we consider this concept as a new 

undefined term governed by its own axioms. Instead of the precise formulation we accept that the protractor 

axiom formulates the abstract (idealized) version of the physical instrument for measuring angles in the real 

world. 

4. 3.4. Congruence axiom 

Figure 3.1. Congruence axiom. 



 Basic facts in geometry  

 42  
Created by XMLmind XSL-FO Converter. 

 

Using a ruler and a protractor we can compare and copy segments and angles in the plane. The next important 

question is how to compare and copy triangles. 

Let a triangle ABC be given in the plane and consider an arbitrary half - line starting from a point A'. Using a 

ruler we can copy the segment AB from A' into the given direction. This results in a point B' such that AB=A'B'. 

Using a protractor and a ruler again we can construct a point C' such that 

 

and A'C'=AC. What about the the missing sides BC and B'C', the missing angles  and ' or  and '? 

Unfortunately we can not know anything about them because nor the axioms of incidence neither the 

measurement axioms carry any information about the missing data of the triangles. If we want to make them 

congruent then we have to postulate them to be congruent. 

Definition. If there is a correspondence between the vertices of two triangles in such a way that all 

corresponding sides and all corresponding angles are congruent then the triangles are congruent copy of each 

other. 

The congruence axiom allows us to deduce the congruence of triangles under a reduced system of information. 

• If there is a correspondence between the vertices of two triangles in such a way that two sides and the angle 

enclosed by them in one of the triangles are congruent to the corresponding sides and the corresponding angle 

in the second of the triangles then the triangles are congruent copy of each other. 

Sometimes it is referred as side - angle - side - axiom or SAS - axiom. 

5. 3.5. Area 

Formally speaking [1] area can be considered as a new undefined term in the axiomatic system of geometry. 

Some obvious requirements can be formulated as follows. Let a polygonal region be defined as the finite union 

of triangles such that the members of the union have at most common sides or vertices. The area of a bounded 

polygonal region is a non-negative real number satisfying the following properties: 

• (area invariance axiom) The area is invariant under the isometries (chapter 12) of the plane. 
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• (area addition axiom) The area of the union of two poligonal regions is just the sum of the areas of the regions 

provided that they have at most common sides or vertices. 

• (area normalization axiom) The area of a rectangle of sides a and b is just a b. 

6. 3.6. Basic facts in geometry 

In what follows we summarize some further facts which will be frequently used in the forthcoming material. We 

would like to emphasize that they are not necessarily axioms but we omit the proofs for the sake of simplicity. 

6.1. 3.6.1. Triangle inequalities 

They are special forms of the basic principle in geometry saying that the shortest way between two points is the 

straight line segment. Consider a triangle with vertices ,  and . Let us denote the sides opposite to the 

corresponding vertices by ,  and . Then 

 

Figure 3.2. Triangle inequalities. 

 

Corollary 3.2. For the sides a, b and c of a triangle 

 

Remark. If a < b < c then the corollary says that 

• the interval [a,b] can be covered by the third side of the triangle, 

• the interval [a,c] can be covered by the second side of the triangle, 

• the interval [b,c] can be covered by the first side of the triangle. 

6.2. 3.6.2. How to compare triangles I - congruence 

The basic cases of congruence of triangles are 

• SAS (two sides and the angle enclosed by them), i.e. 

 

(see congruence axiom). 

• ASA (one side and the angles on this side), i.e. 
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• SAA (one side and two angles), i.e. 

 

• SSS (all sides), i.e. 

 

• SsA (two sides and the angle opposite to the larger one), 

 

Figure 3.3. Congruent triangles. 

 

Figure 3.4. The case SsA. 

 

Theorem 3.3. (The geometric characterization of the perpendicular bisector) The perpendicular bisector of a 

segment is the locus of points in the plane having the same distance from each of the endpoints. 

Proof. Let AB be a segment with midpoint F and consider the line l through F in such a way that l is 

perpendicular to the line AB. If X is a point in l then the triangles AFX and BFX are obviously congruent to 

each other because of the congruence axiom SAS. Therefore AX=BX. Conversely if AX=BX then the triangles 

AFX and BFX are congruent because of SSS. Therefore the angles at F are equal and their sum is 180 degree in 

measure. This means that the line XF is just the perpendicular bisector of the segment. 

 

Exercise 3.1. Formulate the geometric characterization of the bisector of an angle in the plane. 
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Hint. Since the triangles FXA and FXB are congruent the bisector is the locus of points in the plane having the 

same distance from each of the arms of the angle. 

Figure 3.5. Bisectors. 

 

Theorem 3.4. The ordering among the sides of a triangle is the same as the ordering among the angles of the 

triangle. 

6.3. 3.6.3. Characterization of parallelism 

The essential difference between the parallel axiom and the other ones is hidden in the notion of parallelism 

itself. The parallelism involves the idea of infinity in a rather important way. If we know that two lines are not 

parallel we still have no idea how far one may have to trace along them before they actually meet. The idea of 

infinity is always problematic because many errors in mathematics arise from generalizations to the infinite of 

what is known true for the finite. As one of interesting examples consider a hotel having as many rooms as 

many natural numbers we have. Is it possible to provide accommodation for one more guest if all of rooms are 

occupied? The answer is definitely yes because if the guest in room n is moving into room n+1 then room 1 

becomes free. In what follows we present a method of checking the parallelism by measuring angles instead of 

taking an infinite - long walk. 

Exercise 3.2. Let  and  be parallel lines in the plane and consider a transversal . Find the relationships 

among the inclination angles. 

 

Figure 3.6. Characterization of parallelism. 
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Theorem 3.5. (Characterization of parallelism) The lines  and  are parallel if and only if one of the following 

relationships is true for the inclination angles: 

 

Exercise 3.3. Prove that the sum of the interior angles of a triangle is 180 degree in measure. 

 

Hint. Let ABC be a triangle. Taking the line l through the point C in such a way that l is parallel to the side AB, 

the statement is a direct consequence of the characterization of parallelism. 

6.4. 3.6.4. How to compare triangles II - similarity 

Theorem 3.6. (Parallel lines intersecting theorem) Let e and e' be two lines in the plane meeting at the point O. 

If the lines a and b are parallel to each other such that the line a meets e and e' at the points A and A', the line b 

meets e and e' at the points B and B' then 

 

In the Hungarian educational tradition it is a theorem. It is also possible to consider the statement as an axiom; 

see Similarity axiom in [1]. 

Definition. Let e and e' be two lines in the plane meeting at the point O. We say that the points O, A, B on the 

line e correspond to the points O, A', B' on the line e' if they have the same ordering, i.e. the line e separates A' 

and B' if and only if the line e' separates A and B. 

Theorem 3.7. (The converse of the parallel lines intersecting theorem) Let e and e' be two lines in the plane 

meeting at the point O. If the line a meets e and e' at the points A and A', the line b meets e and e' at the points B 

and B' such that O, A, B correspond to O, A', B' and  then the lines a and b are parallel. 

Figure 3.7. Parallel lines intersecting theorem. 

 

The parallel lines intersecting theorem (and its converse) together with the basic cases of the congruence of 

triangles give automatically the basic cases of similarity. 

Definition. If there is a correspondence between the vertices of two triangles in such a way that all 

corresponding angles are congruent and the ratios between the corresponding sides are also equal then the 

triangles are said to be similar. 
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Figure 3.8. Similar triangles. 

 

The basic cases of similarity of triangles are 

• S'AS' (two sides and the angle enclosed by them), i.e. 

 

• AAA (all of angles), i.e. 

 

• S'S'S' (all sides), i.e. 

 

• S's'A (two sides and the angle opposite to the larger one), 
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Chapter 4. Triangles 

1. 4.1. General triangles I 

Let us start with the collection of distinguished points, lines and circles related to a triangle 

Definition. The lines passing through the midpoints of the sides of a triangle are called midlines. 

Using the converse of the parallel lines intersecting theorem 3.7 [46] it can be easily seen that any midline is 

parallel to the corresponding side and the line segment between the midpoints is just the half of this side. 

Figure 4.1. Midlines. 

 

Theorem 4.1.  The perpendicular bisectors of the sides of a triangle are concurrent at a point which is just the 

center of the circumscribed circle. 

Proof. The statement is a direct consequence of the geometric characterization 3.3 [44] of the bisector of a 

segment. 

 

Figure 4.2. Circumcircle. 

thm_parallellines2_
thm_bisectors1_
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Theorem 4.2.  The bisectors of the interior angles of a triangle are concurrent at a point which is just the 

center of the inscribed circle. 

Proof.  The statement is a direct consequence of the geometric characterization of the bisector of an angle. 

 

Figure 4.3. Incircle. 

 

Theorem 4.3. The altitudes of a triangle are concurrent at a point which is called the orthocenter of the 

triangle. 

Figure 4.4. Orthocenter - the intersection of the altitudes. 
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Proof. Consider the triangle constituted by the parallel lines to the sides passing through the opposite vertices. 

The orthocenter of the triangle ABC is the center of the circumscribed circle of A'B'C'. 

 

Definition. The medians of a triangle are the straight lines joining the vertices and the midpoints of the opposite 

sides. 

Figure 4.5. Barycenter - the intersection of the medians. 

 

Theorem 4.4. The medians are concurrent at a point which is called the barycenter/centroid of the triangle. 

This point divides the medians in the ratio . 
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Proof. It can easily seen that 

• the triangle FSD is similar to the triangle CSA, 

• the triangle DSE is similar to the triangle ASB. 

The ratio of the similarity is 1 : 2. This means that the medians BE and CF intersect AD under the same ratio. 

Therefore they are concurrent at S. 

 

Remark. Each median bisects the area of the triangle. 

2. 4.2. The Euler line and the Feuerbach circle 

Theorem 4.5. The orthocenter M, the center O of the circumscribed circle and the barycenter S are collinear. 

The point S divides the segment MO in the ratio 2 : 1. The common line of the points M, O and S is called the 

Euler line. 

Figure 4.6. Euler-line. 

 

Proof. The proof is based on the central similarity with respect to the barycenter. A central similarity is a point 

transformation  of the plane such that 

• there is a distinguished point C which is the only fixpoint (center) of the transformation, 

• P, C and P' are collinear, 

• there is a real number  such that 

 

If  then P and P' are on the same ray emanating from C. In case of  the center separates P and P'. 

Figure 4.7. Central similarity. 
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According to the converse of the parallel lines intersecting theorem any line is parallel to the image under a 

central similarity. Consider now the central similarity with center S and ratio - 1/2. Then each vertex is 

transferred into the midpoint of the opposite side and each altitude is transferred into the perpendicular bisector 

of the corresponding side. This means that M'=O proving the statement. 

 

Definition. The image of the circumscribed circle under the similarity with center S and ratio - 1/2 is called the 

Feuerbach circle of the triangle. 

Figure 4.8. Feuerbach-circle. 

 

Theorem 4.6. The Feuerbach circle passes through nine points: 

• the midpoints of the sides, 

• the legs of the altitudes, 
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• the midpoints of the segments joining the orthocenter and the vertices A, B and C. 

Proof. The Feuerbach circle passes through the midpoints of the sides because the circumscribed circle passes 

through the vertices. The radius R' of the Feuerbach circle is just R/2 because of the similarity ratio. Since S 

divides the segment MO in the ratio 2 : 1 the center O' of the Feuerbach circle is the midpoint of the segment 

MO. Therefore O'G is the midline of the trapezoid DMOE and G bisects the segment DE. This means that DO'E 

is an isosceles triangle with 

 

and the leg point D of the altitude belonging to the side c is on the Feuerbach circle. Finally O'F is a midline in 

the triangle CMO. Therefore 

 

as was to be stated. 

 

3. 4.3. Special triangles 

Triangles can be classified by angles or sides. In what follows we shall use the basic notations 

• ,  and  for the vertices, 

• ,  and  for the angles at the corresponding vertices and 

• ,  and  for the opposite sides to the angles ,  and , respectively. 

The most important cases of special triangles are 

• equilateral (regular) triangles: all sides and all angles are equal to each other, 

• isosceles triangles: two sides and the opposite angles are equal to each other, 

• acute triangles: all angles are less than 90 degree, 

• right triangles: one of the angle is 90 degree in measure, 

• obtuse triangle: one of the angle is greater than 90 degree 

Figure 4.9. Triangles. 
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or mixed cases: for example isosceles right triangles. One of the oldest fact in geometry is Pythagorean 

theorem for right triangles. 

Theorem 4.7. (Pythagoras, 570 BC - 495 BC) The sum of the squares of the legs is just the square of the 

hypothenuse: 

 

Proof. If we divide a square with sides of length a+b into five parts by the figure then the area can be computed 

as 

 

Pythagorean theorem follows immediately by the help of an algebraic calculation. 

 

Remark. The meaning of hypothenuse is stretched. The word refers to the ancient method to create right angles 

by a segmental string in ratio 3 : 4 : 5. Note that 

 

Figure 4.10. Pythagorean theorem. 
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Theorem 4.8. (Height theorem) If m denotes the altitude belonging to the hypothenuse in a right triangle then 

, where p and q are the lengths of the segments from the vertices to the leg point of the altitude. 

Figure 4.11. Height theorem. 

 

Proof. By Pythagorean theorem in the triangles CTB, CTA and ABC 

 

Therefore 

 

which means that . 
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Remark. In other words the altitude m is the geometric mean of p and q. 

Theorem 4.9. (Leg theorems)   and . 

Proof. As above 

 

where m is the geometric mean of p and q. Therefore (for example) 

 

as was to be stated. 

 

Remark. This collection of theorems (Pythagorean, Height and Leg theorems) are often referred as similarity 

theorems in right triangles because there are alternative proofs by using the similar triangles CTB, CTA and 

ABC. 

Theorem 4.10. (Thales theorem) If A, B and C are three different points on the perimeter of a circle such that 

AB is one of the diagonals then ABC is a right triangle having the angle of measure 90 degree at C. 

Figure 4.12. Thales theorem. 

 

Proof. Let O be the center of the circle. Since 



 Triangles  

 57  
Created by XMLmind XSL-FO Converter. 

 

it follows that AOC and BOC are isosceles triangles. Therefore 

 

and, consequently, 

 

 

Remark. Thales theorem is actually the special case of a more general observation called inscribed angle 

theorem: let A, B and C be three different points on the perimeter of a circle with center O and suppose that the 

angles  and  are lying on the same arc. Then 

 

because 

 

The proof is based on the isosceles triangles AOC and BOC. 

Figure 4.13. Inscribed angle theorem. 

 

4. 4.4. Exercises 
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Exercise 4.1. Collect the facts we used to prove Pythagorean theorem. 

 

Solution. The proof of Pythagorean theorem is based on 

• the area of squares, right triangles and the basic principles of measuring the area, 

• the sum of angles in a (right) triangle is 180 degree, 

• algebraic identities. 

Exercise 4.2. Prove the height and the leg theorems by using similar triangles. Conclude Pythagorean theorem 

too. 

 

Exercise 4.3. Find the missing quantities in each row of the following table. 

 

 

Hint. Use Pythagorean, height and leg theorems: 

 

Exercise 4.4. Find the length of the side of a regular triangle inscribed in the unit circle. 

 

Hint. Using Thales theorem the triangle  in the figure has a right angle at the vertex . Therefore 

 

i.e. . 

Figure 4.14. Exercise 4.4 [58]. 

xca_4_4_4_


 Triangles  

 59  
Created by XMLmind XSL-FO Converter. 

 

Exercise 4.5. In a right triangle the length of the longest side  is . The leg  is . 

• Calculate the missing leg and the area of the triangle. 

• What is the radius of the inscribed circle? 

• What are the sine, cosine, tangent and cotangent of the angle at A? 

 

5. 4.5. Trigonometry 

Euclidean geometry is essentially based on triangles. The metric properties of triangles (the length of the sides 

or the measure of the angles) can be described by elegant formulas. They are very important in practice too (see 

chapter 6). The word trigonometry directly means the measuring of triangles. 

Using the basic cases of similarity it can be easily seen that two right triangles with acute angles of the same 

measure are similar. Therefore the ratios between the legs and the hypothenus are uniquely determined by the 

angles. This results in the notion of sine, cosine, tangent and cotangent in the following way. Let  be an acute 

angle, i.e. . If ABC is a right triangle with legs AC and BC and the angle at the corner A is  then 

• the sine of  is the ratio between the opposite leg and the hypothenuse:  

• the cosine of  is the ratio between the adjacent leg and the hypothenuse:  

• the tangent of  is the ratio between the opposite and the adjacent leg: , 

• the cotangent of  is the ratio between the adjacent leg and the opposite leg: . 

Figure 4.15. Trigonometry in a right triangle. 
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We can easily conclude that 

 

 

(trigonometric Pythagorean theorem), 

 

 

It is hard to create a geometric configuration to find the sine and cosine (tangent and cotangent) of a given angle 

in general. The so-called additional rules help us to solve such kind of problems. 

Theorem 4.11. (Additional rules) 

 

 

Special cases are 

 

 

Figure 4.16. Additional rules. 
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Proof. Using the notations in the figure we find that 

 

For the sake of simplicity suppose that DO = BO = 1. Therefore 

 

 

On the other hand 

 

 

as was to be proved. 

 

The additional rules can be used to extend the notion of sine, cosine, tangent and cotangent. Using the 

decomposition 90=45+45 we have immediately that 

 

The extension in mathematics is usually based on the principle of permanence. This means that we would like to 

keep all the previous rules (cf. the extension of powers from naturals to rationals). As another example compute 

 with the help of decomposition 105=60+45: 
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New relationships can be created such as 

 

 

Especially the sine is positive in the second quadrant of the plane but the cosine has a minus sign. In a similar 

way 

 

Therefore 

 

i.e. both the sine and the cosine are negative in the third quadrant. To investigate the fourth quadrant verify that 

 

We have that the sine is negative in the last quadrant but the cosine keeps its positive sign because of 

 

for any acute angle . Finally 

 

The periodicity properties show that the process of extension goes to the end. From now on trigonometric 

expressions can be considered as functions [6]. The domain of the sine and cosine functions are the set of all 

angles measured in degree or radian. In mathematics the radian is more typical because it is directly related to 

the geometric length of the arc along a unit circle (a circle having radius one). The angle belonging to the arc of 

unit length is 1 radian in measure. The relationship between the degree and the radian is just 

 

Remark. To memorize the signs of trigonometric expressions consider the motion of a point along the unit 

circle centered at the origin in the Euclidean coordinate plane. The cosine and the sine functions give the first 

and the second coordinates in terms of the rotational angle. Obviously we have positive coordinates in the first 

quadrant. After entering in the second quadrant the first coordinate must be negative and so on. For the 

illustration of the trigonometric functions see figures 4.17 and 4.18. 

Figure 4.17. The sine function. 
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Figure 4.18. The tangent function. 

 

6. 4.6. Exercises 

Exercise 4.6. Compute the exact values of sine, cosine, tangent and cotangent functions for the following 

angles: 

 

 

Solution. From an isosceles right triangle we have that 

 

From a regular triangle with sides of unit length we have that 

 

and 

 

Exercise 4.7. Compute the exact values of sine, cosine, tangent and cotangent functions for the following 

angles: 

 

 

Figure 4.19. Exercise 4.7 [63]. 

xca_4_6_2_
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Solution. Consider a regular 10–gon inscribed in the unit circle. As the figure shows the triangles  and 

 are similar which means that 

 

where  denotes the length of the side AB. We have a quadratic equation 

 

Therefore 

 

To express (for example)  consider the perpendicular bisector of the side AB in the triangle OAB. Since 

the radius is 1 we have that 

 

and, consequently, 

 

by the trigonometric Pythagorean theorem. On the other hand 

 

To determine the trigonometric expressions of the angle 36 degree in measure use the perpendicular bisector 

belonging to the side OD in the triangle OBD. Since the radius of the circle is 1 we have that 
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Exercise 4.8. Compute the exact values of sine, cosine, tangent and cotangent functions for the following 

angles: 

 

 

Solution. Using the decompositions 

 

the additional rules give the values of sine, cosine tangent and cotangent. Finally 

 

and 

 

because of the trigonometric Pythagorean theorem 

 

Therefore 

 

and so on. 

Exercise 4.9. Express 

 

in terms of  and . 

 

Exercise 4.10. Sketch the graph of the cosine function. 

 

Hint. Use that 

 

Exercise 4.11. Explain where the name tangent comes from? 

 

Exercise 4.12. Sketch the graph of the cotangent function. 

 

Hint. Use that 

 

7. 4.7. General triangles II - Sine and Cosine rule 
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One of the most important applications of the extended sine and cosine functions is to conclude the sine and 

cosine rules for general triangles. 

7.1. 4.7.1. Sine rule 

Figure 4.20. Sine rule - acute angles. 

 

First of all we investigate the case of acute triangles (all the angles are less than 90 degree in measure). To 

present the sine rule let us start with the circumscribed circle of the triangle ABC. The center is just the 

intersection of the perpendicular bisectors of the sides. Since BOC is an isosceles triangle the inscribed angle 

theorem says that 

 

where D is the midpoint of BC. Therefore 

 

Theorem 4.12. (Sine rule) 

 

Exercise 4.13. Prove the sine rule in case of obtuse triangles. 

 

Hint. Observe that . 

Figure 4.21. Sine rule - an obtuse angle. 
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7.2. 4.7.2. Cosine rule 

The cosine rule is the generalization of Pythagorean theorem. At first we discuss acute triangles again. Using the 

altitude belonging to the side b we express the square of a in two steps by using Pythagorean theorem. If X is the 

foot point of the altitude then we can write that 

 

Therefore 

 

 

Theorem 4.13. (Cosine rule) 

 

 

 

Figure 4.22. Cosine rule - acute angles. 
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Exercise 4.14. Prove the cosine rule in case of obtuse triangles. 

 

Hint. Observe that if  then the foot point of the altitude belonging to b is outside from the segment AC. 

We should use the acute angle  to express AX and BX as above: 

 

Therefore 

 

 

because of 

 

Figure 4.23. Cosine rule - an obtuse angle. 

 

7.3. 4.7.3. Area of triangles 
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In what follows we shall use the axioms of measuring area; see section 3.5. 

The area of right triangles. Using the area addition axiom we can easily conclude that the area of a right 

triangle with legs a and b is just ab/2. The altitude belonging to the hypothenuse divides the right triangle into 

two right triangles. Therefore we have the following formula to compute the area: 

 

where m denotes the altitude (height) belonging to the hypothenuse c. The legs are working as altitudes 

belonging to each other. 

The area of a general triangle can be also computed by the area addition axiom. The basic formulas to 

compute the area are 

 

where ,  and  denote the altitudes belonging to the sides a, b and c, respectively. In practice it is usually 

hard to measure the altitude (i.e. the distance between a line and a point) in a direct way. Using elementary 

trigonometry (trigonometry in a right triangle) we can substitute the altitude belonging to a as 

 

Therefore we have the following trigonometric formulas 

 

to compute the area. Another way is given by Héron's formula 

 

where 

 

is the so-called semiperimeter. The area of a triangle is closely related to the the radius r of the inscribed 

circle. Since the bisectors of the interior angles divide the triangle into three parts through the center of the 

inscribed circle and each of these triangles has altitude r we have that 

 

and, consequently, 

 

where s is the semiperimeter. 

8. 4.8. Exercises 

Exercise 4.15. Two sides of a triangle and the angle enclosed by them are given: 3, 4 and 60 degree in measure. 

• Find the missing side and angles. 

• Calculate the area of the triangle. 

• Calculate the radius of the circumscribed circle of the triangle. 
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Hint. See the case SAS. 

Exercise 4.16. Three sides of a triangle ABC are given: 6, 8 and 12. 

• Is it an acute, right or obtuse triangle? 

• Calculate the area of the triangle. 

• Calculate the radius of the circumscribed circle of the triangle. 

 

Hint. See the case SSS. To decide whether ABC is an acute, right or obtuse triangle it is enough to compute the 

angle opposite to the longest side of length 12: 

 

which means that we have an obtuse angle. 

Exercise 4.17. Three sides of a triangle are given: 8, 10 and 12. 

• Calculate the heights and the area of the triangle. 

• Calculate the biggest angle of the triangle. 

• Calculate the radius of the circumscribed circle of the triangle. 

 

Exercise 4.18. The sides of a triangle are a=5, b=12 and c=13. Calculate the angle opposite to the side c. 

 

Exercise 4.19. Three sides of a triangle are given: 3, 4 and . 

• Find the angles of the triangle. 

• Calculate the area of the triangle. 

• Calculate the radius of the circumscribed circle of the triangle. 

 

Exercise 4.20. Two sides of a triangle are a=8 and b=6, the angle  opposite to the side a is 45 degree in 

measure. Calculate the length of the missing side and find the area of the triangle. 

 

Hint. See the case SsA. 

Exercise 4.21. Two sides of a triangle are a=8 and b=6, the angle  opposite to the side b is 45 degree in 

measure. Calculate the length of the missing side and find the area of the triangle. 

 

Exercise 4.22. Find the missing quantities in each row of the following table. 
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Warning. Observe that the cosine rule gives impossible values in case of a=8, b=10 and c=20 (cf. triangle 

inequalities). 

Exercise 4.23. Prove Héron' s formula. 

 

Hint. Express the cosine of the angle  from the cosine rule: 

 

Conclude that 

 

Use the trigonometric formula to express the area only in terms of the sides of the triangle: 

 

Exercise 4.24. Prove that if a polygonal shape has an inscribed circle then the radius can be expressed as the 

fraction A/s, where A is the area of the polygonal shape and s is the half of its perimeter. 
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Chapter 5. Exercises 

1. 5.1. Exercises 

Exercise 5.1. The radius of the circumscribed circle around a right triangle is 5, one of the legs is 6. What is the 

area of the triangle? 

 

Solution. Thales theorem says that the hypothenuse is just c =  = 10. Therefore the missing leg must satisfy 

the equation 

 

which means that x = 8. The area is 

 

Exercise 5.2. The legs of a right triangle are 6 and 8. How much is the angle of the medians belonging to the 

legs? 

 

Figure 5.1. Exercise 5.2 [72]. 

 

Solution. Let AC = 6 and BC = 8. At first we compute the lengths of the medians by Pythagorean theorem: 

 

Therefore BF =  and AG = . It is known that the medians intersect each other under the ratio 1 : 2. 

Therefore we have a triangle constituted by 

• the midline FG parallel to the hypothenuse AB=10 (from the Pythagorean theorem) 

• (1/3) BF and (1/3) AG. 

Using the cosine rule it follows that the angle  enclosed by the medians satisfies the equation 

xca_5_1_2_
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Explicitly 

 

Therefore . Usually we consider the acute angle 180 -  as the angle of medians. 

Exercise 5.3. The lengths of the medians of an isosceles triangle are 90, 51 and 51. What is the length of the 

sides, and the measure of the angles of the triangle? 

 

Figure 5.2. Exercise 5.3 [73]. 

 

Solution. Let AB be the side belonging to the longest median. Since the medians intersect each other by the ratio 

1 : 2 we have a right triangle to compute AB/2 because 

 

Therefore AB/2 = 16. Secondly the common length of the missing sides can be computed by Pythagorean 

theorem again: 

 

To compute the angles we can use elementary trigonometry in right triangles. For example 

 

and the common measure of the missing angles can be computed as 

 

Exercise 5.4. One of the angle of an isosceles triangle is 120 degree, the radius of the inscribed circle is 3. How 

long are the sides of the triangle? 

 

xca_5_1_3_
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Solution. To solve the problem we use the basic cases of similarity. It is clear that an obtuse angle (like 120) can 

not be repeated inside a triangle which means that the missing angles must be equal to each other. They are 30 

degree in measure. Since the angles are given the triangle ABC is determined up to similarity. We can choose 

one of the side arbitrarily: let (for example) the side AB where the equal angles are lying on is of length 2. The 

common length x of the missing sides can be determined by the cosine rule 

 

i.e. x = 2/ . Now we can compute the radius of the inscribed circle by the formula 

 

where 

 

is the area and 

 

is the semiperimeter (the half of the perimeter of the triangle). Finally the ratio of the similarity is just r : 3 

which means that the real size of the triangle ABC is 

 

Exercise 5.5. One of the angle of a triangle is 120 degree, one of the sides is just the arithmetic mean of the 

others. What is the ratio of the sides. 

 

Solution. Suppose that . Then we have to write that 

 

i.e. 

 

On the other hand c must be opposite to the angle of measure 120 degree. Using the cosine rule 

 

Therefore 

 

because of cos 120 = - 1/2. We have two equations with two unknown parameters x = a/b and y = c/b : 

 

 

Therefore 
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Exercise 5.6. The sides of a triangle have lengths AC = BC =  and AB=3. 

• Determine the angles and the area of the triangle. 

• What is the radius of the inscribed circle. 

 

Solution. Since it is an isosceles triangle the common measure of the angles lying on the side AB can be easily 

computed by elementary trigonometry. If D is the midpoint of the segment AB then 

 

Therefore  and . The area is 

 

To compute the radius of the inscribed circle we need the ratio of the area and the semiperimeter 

 

Finally 

 

Figure 5.3. Exercise 5.6 [75]. 

 

Exercise 5.7. Calculate the length of the sides of an equilateral triangle inscribed in a circle of radius 10. 

Calculate the area of this triangle and the ratio of the areas of the triangle and the circle. 

 

Hint. See excercise 4.4 [58]. 

Exercise 5.8. Two sides of a triangle are a=6 and b=3, the angle  opposite to the side a is 60 degree in 

measure. Calculate the missing side and angles. Find the area of the triangle. 

 

Solution. The first step is to compute the missing side by the help of the cosine rule: 

 

 

xca_5_1_6_
xca_4_4_4_
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Therefore 

 

The only possible choice is 

 

This gives the area immediately by the fomula 

 

One of the missing angle can be computed by the help of the cosine rule again: 

 

Finally . 

Exercise 5.9. The area of a right triangle is 30, the sum of the legs is 17. Calculate the sides of the triangle. 

 

Solution. Since ab/2=30 and a+b=17 

 

which results in a quadratic equation 

 

for the unknown length a of one of the legs. We have 

 

If a = 12 then b = 5 and if a = 5 then b = 12 and c=13. 

Exercise 5.10. Calculate the area of the bright part in the figure. 

 

Figure 5.4. Exercise 5.10 [76]. 

xca_5_1_10_
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Solution. The area is the sum 

 

given by the area of a rectangle, a trapezoid and three equilateral triangles with sides of length 2. 

Exercise 5.11. Two sides of a triangle are 8 and 15, its area is 48. How long is the third side? 

 

Solution. Using the trigonometric formula it follows that 

 

i.e. sin  =0.8. We are going to use the cosine rule to compute the side c opposite to the angle . We have that 

 

and, consequently, cos  = 0.6 or cos  = - 0.6 (an acute or an obtuse angle). The cosine rule says that the 

possible values of the missing side are 

 

or 

 

Exercise 5.12. Two sides of a triangle are 8 and 12, the median segment belonging to the third side is 9. What is 

the area of the triangle? 
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Figure 5.5. Exercise 5.12 [77]. 

 

Solution. Since 

 

and 

 

we have that 

 

because of 

 

Therefore . On the other hand 

 

which means that 

 

The area of the triangle ABC is obviously the sum of the areas of triangles ADC and CDB: 

 

because of 

 

xca_5_1_12_
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Chapter 6. Classical problems I 

"The great book of Nature lies ever open before our eyes and the true philosophy is written in it ... But we 

cannot read it unless we have first learned the language and the characters in which it is written ... It is written in 

mathematical language and the characters are triangles, circles and other geometric figures..." (Galileo Galilei) 

1. 6.1. The problem of the tunnel 

Problem [4]: Due to the increasing population a certain city of ancient Greece found its water supply 

insufficient, so that water had to be channeled in from source in the nearby mountains. And since, unfortunately, 

a large hill intervened, there was no alternative to tunneling. Working from both sides of the hill, the tunnelers 

met in the middle as planned. How did the planners determine the correct direction to ensure that the crews 

would meet? 

Solution. Since the points A (city) and B (source) cannot be connected directly we have to connect them 

indirectly. Let C be a point from which both A and B are observable. By measuring the distances AC, BC and 

the angle  we can easily find the angles  and  by the help of the cosine rule. 

Inputs: CA, CB and  

1. Compute 

 

2. Compute 

 

Exercise 6.1. Find the solution if 

 

 

Exercise 6.2. Can you generalize the method by using more than one observers? 

 

Figure 6.1. The problem of the tunnel - one observer. 
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Figure 6.2. Two observers. 

 

2. 6.2. How to measure an unreachable distance 

In many practical situations the direct measuring of distances is impossible; see for example astronomical 

measurements or navigation problems. Instead of distances we can measure visibility angles. The following 

problem is related to the determination of an unreachable distance by measuring visibility angles and a given 

base line. 

Problem: Let the distance of the segment AB be given and suppose that we know 

• the visibility angle  of BD from A, 

• the visibility angle  of AC from B, 

• the visibility angle  of CD from A, 

• the visibility angle  of CD from B. 
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How can we calculate the distance CD? 

Figure 6.3. Unreachable distance 

 

Solution: The sine rule in the triangle ABC shows that 

 

and thus 

 

In a similar way 

 

Therefore 

 

Using the cosine rule in the triangle ADC 

 

3. 6.3. How far away is the Moon 

Problem [4]: How are we to measure the distance of the Moon from the Earth? 

Figure 6.4. How far away is the Moon 
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Solution. Since the distance between the Earth and the Moon cannot be measured directly it must be measured 

indirectly. The calculation needs accessible distances like the distance between the observers A and B along the 

perimeter of the Earth. They measure simultaneously the inclination angles of the segments AM and BM to the 

vertical lines of their positions. If we know the radius of the Earth then we can calculate the distance OM in the 

following way. 

Inputs: the arclength from A to B, ,  and the radius R of the Earth. 

1. Compute the central angle  by the formula 

 

Using that AOB is an isosceles triangle 

 

2. Compute  and  by the formulas 

 

3. Compute the length of the segment AB by using the cosine rule in the isosceles triangle AOB: 

 

From now on the triangle AMB is uniquely determined up to congruence because we know one side and the 

angles lying on this side. 

4. Compute AM by using the sine rule in the triangle AMB. 

5. Compute OM by using the cosine rule in the triangle OAM. 

Remark. One obstacle remains; the Moon moves relatively to the Earth. If the observers measure the angles in 

different times then we are confronted with a quadrilateral instead of a triangle and the method has failed. For 

triangulation the angles must be measured simultaneously. It is clear that if the observer positions are too close 

to each other then AM and BM are almost parallel. For accurate measures almost parallel lines must be avoided. 
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But how is the measurer at B to know when the measurer at A is measuring? The ancient Greek's answer to the 

problem is based on a simple observation. Since both measurers observe the Moon the best is to wait for a signal 

by the observed object. In other words measurers had to wait for some happening on the Moon visible from 

Earth. What happening? A lunar eclipse. The eclipse provides four distinct events which are observable 

simultaneously from A and B: 

• the beginning of the Moon's entry to the Earth's shadow, 

• the completion of the Moon's entry to the Earth's shadow, 

• the beginning of the Moon's emergence from the Earth's shadow, 

• the completion of the Moon's emergence from the Earth's shadow. 
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Chapter 7. Quadrilaterals 

In Euclidean plane geometry quadrilaterals mean polygons with four sides and four vertices. Quadrilaterals (or 

polygons) are tipically built from triangles which may have only common vertices or sides. Especially the 

quadrilaterals are the union of two triangles having exactly one common side. Sometimes one admits the union 

of two triangles with exactly one common vertex to be a quadrilateral but these self-intersecting or crossed cases 

will not be important for us. We restrict ourselves to the case of simple (not self-intersecting) polygons. 

1. 7.1. General observations 

Theorem 7.1. The sum of the interior angles of a quadrilateral is just 360 degree in measure. 

Corollary 7.2. Any quadrilateral has at most one concave interior angle. Quadrilaterals having concave angles 

are called concave quadrilaterals. Otherwise the quadrilateral is convex. 

In what follows we summarize some types of quadrilaterals. The most important special class is formed by 

parallelograms because of their central role in the development of the Euclidean geometry. After declaring the 

axioms of Euclidean geometry we can prove lots of equivalent characterization for a convex quadrilateral to be a 

parallelogram. Some of them is crucial to prove the parallel lines intersecting theorem 3.6 [46]. 

2. 7.2. Parallelograms 

Definition. A parallelogram is a quadrilateral with two pairs of parallel sides. The most important special cases 

are 

• squares (all the sides and all the interior angles of the parallelogram are equal), 

• rectangle (all the interior angles of the parallelogram are equal), 

• rhombus (all the sides of the parallelogram are equal). 

Theorem 7.3. The quadrilateral ABCD is a paralellogram if and only if one of the following conditions is 

satisfied. 

• The opposite sides are of equal length. 

• The opposite angles are equal. 

• One of the pairs of the opposite sides are of equal length and parallel. 

• It is symmetric with respect to the intersection of the diagonals. 

• The diagonals bisect each other. 

Figure 7.1. Characterization of parallelograms. 

thm_parallellines1_
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Proof.  If ABCD is a parallelogram then ASA implies that any diagonal divides the parallelogram into 

congruent triangles. Therefore both the opposite sides and the opposite angles are equal. On the other hand the 

diagonals bisect each other because they divide the parallelogram into four triangles which are pairwise 

congruent. 

The proofs of the converse statements are also based on the cases of congruence of triangles and the 

characterization of parallelism. If the opposite sides are of equal length then SSS implies that any diagonal 

divides the quadrilateral into congruent triangles. Therefore the corresponding angles have the same measure. In 

the sense of the characterization of parallelism we have that the opposite sides are parallel. 

Since the sum of the interior angles is 360 degree in measure the equality of the opposite angles means that the 

sum of angles lying on the same side is 180 degree. The characterization of parallelism says that the opposite 

sides are parallel. 

If one of the pairs of the opposite sides are of equal length and parallel then the characterization of parallelism 

and SAS implies that any diagonal divides the quadrilateral into congruent triangles. The proof can be finished 

as above. 

The last two statements are obviously equivalent to each other. Therefore it is enough to discuss one of them. 

The symmetry with respect to the intersection of the diagonals obviously implies that the opposite sides are 

parallel. 

 

As an application we prove the parallel lines intersecting theorem 3.6 [46] 

1st step. We can conclude that the parallel projections of congruent segments are congruent: if OA=AB then the 

triangles OAA' and ABC are congruent and AC=A'B' by theorem 7.3 [84]. Therefore OA:OB=OA':OB'=1:2. 

Figure 7.2. Parallel lines intersecting theorem: the first step. 

 

thm_parallellines1_
thm_parallelogramms
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2nd step. In case of not necessarily congruent segments OA and AB let  be an arbitrary integer and divide the 

segment OA into n equal parts by the points 

 

Continue the proccess of copying the segment of length OA/n from A into the direction of B as far as we have 

 

Using the first step the parallel projections 

 

gives the divison of OA' into n equal parts. On the other hand 

 

Therefore 

 

which means that 

 

for any integer . Taking the limit  we have that 

 

as was to be stated. 

3. 7.3. Special classes of quadrilaterals 

Definition. A quadrilateral is called trapezoid if it has at least one pair of opposite sides which are parallel. An 

isosceles trapezoid or symmetric trapezoid have equal base angles in measure. 

Definition. A quadrilateral is called kite if two pairs of adjacent sides are of equal length. 

Exercise 7.1. Prove that in case of a kite the angles between the two pairs of equal sides are equal in measure 

and the diagonals are perpendicular. 

 

Solution. From the definition of a kite one of the diagonal divides the kite into congruent triangles by the basic 

case SSS of the congruence. The perpendicularity follows directly from the geometric characterization of the 

perpendicular bisector. 

3.1. 7.3.1. Symmetries 

Suppose that the quadrilateral ABCD has an axial symmetry, i.e. we have a line such that the quadrilateral is 

invariant under the reflection about this line. Since any vertex must be transformed into another one we have 

that 

 

where the number k of the vertices which are not on the axis of symmetry must be even. The possible cases are 

k=0, 2 or 4: 
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The case  is obviously impossible. If we have 2 vertices on the axis of symmetry then the quadrilateral 

must be a convex or concave kite. Otherwise it is a symmetric trapezium. 

Figure 7.3. Axially symmetric quadrilaterals. 

 

Definition. Rotational symmetry of order n with respect to a particular point means that rotations by angle 360/n 

does not change the object. 

Exercise 7.2. Prove that quadrilaterals with symmetry of order 2 are parallelograms 

 

Exercise 7.3. Prove that quadrilaterals with symmetry of order 4 are squares. 

 

3.2. 7.3.2. Area 

The area of a polygonal region can be computed as the sum of the areas of subtriangles. In what follows we 

consider some special cases with explicit formulas. They are easy consequences of the triangle decomposition. 

The area of a 

• parallelogram is the product of one of the parallel bases and the altitude belonging to this base. The 

trigonometric version of the formula is 

 

This follows easily from the division of the parallelogram into congruent triangles by one of the diagonals. 

• trapezoid can be computed as 
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where a and c are the lengths of the parallel bases and m is the altitude of the trapezoid. One can introduce the 

midline segment for trapezoids on the model of triangles in the same way: the midline of a trapezoid is just 

the line segment joining the midpoints of the legs. Using the division of the trapezoid into triangles by one of 

the diagonals it can be easily seen that the length of the midline of a trapezoid is just the arithmetic mean of 

the lengths of the parallel bases. Another way to conclude the area formula is to put two congruent copies of 

the trapezoid next to each other in such a way that they form a parallelogram. In terms of geometric 

transformation it can be realized by a central reflection about the midpoint of one of the legs. 

• convex quadrilateral is just 

 

where e and f are the lengths of the diagonals and  is the angle enclosed by them. 

Exercise 7.4. Prove the area formula of a parallelogram. 

 

Exercise 7.5. Prove the area formula of a trapezoid. 

 

Exercise 7.6. Prove the area formula of a kite. 

 

Theorem 7.4. Let ABCD be a convex quadrilateral. The area can be computed as 

 

where  is the angle enclosed by the diagonals AC and BD. 

Proof. Let E be the point where the diagonals meet at. The triangles AEB, BEC, CED and DEA covers the 

quadrilateral such that we have only common vertices and edges. Therefore the area can be computed as the sum 

 

Since the angles at the common vertex E are alternately  and 180 -  we can conclude that 

 

 

where  is the angle enclosed by the diagonals AC and BD. 

 

Exercise 7.7. Let ABCD be a convex quadrilateral. Find the point in the plane to minimize the sum 

 

 

Solution. By the triangle inequality the point X must be the intersection of the diagonals AC and BD. 
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Chapter 8. Exercises 

1. 8.1. Exercises 

Exercise 8.1. Three sides of a symmetrical trapezoid are of length 10. The fourth side has length 20. Calculate 

the angles and the area of the trapezoid. 

 

Figure 8.1. Exercise 8.1 [89]. 

 

Solution. Using the symmetry we can easily change the trapezoid into a rectangle. Let ABCD be a symmetrical 

trapezoid having sides of length AB = 20, BC = AD = 10 and CD = 10. The orthogonal projection C'D' of CD 

onto the longer base AB is of length 10 again. Therefore AD'=5 and BC' = 5 because of the symmetry. From the 

right triangle AD'D we have that the height is 

 

The sides of the rectangle is just a = AB - BC' = 20 - 5 = 15 and b = . The area is 

 

The angles are alternately 60 and 120 degree in measure. 

Exercise 8.2. The sides AB and BC of rectangle ABCD are 10 and 6. What is the distance of a point P on the 

side AB from the vertex D if 

 

 

Figure 8.2. Exercises 8.2 [89] and 8.3 [90]. 
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Solution. From the right triangle PBC 

 

i.e. 

 

Since AP+PC=12 

 

and 

 

Finally 

 

Exercise 8.3. In a symmetrical trapezoid the inclination angle of the diagonal to the longer parallel base is 45 

degree, the length of the diagonal is 10. What is the area of the trapezoid? 

 

Solution. Using the symmetry we can easily change the trapezoid into a rectangle. Since the diagonal bisects the 

angles of the rectangle it must be a square. The common length x of the sides can be derived from the 

Pythagorean theorem 

 

and the area is  = 50. 

Exercise 8.4. The side of the square ABCD is 10. Calculate the radius of the circle which passes through the 

point A, and touches the sides BC and CD. 

 

Solution. Divide the problem into two parts. At first let us concentrate on the circles touching the sides BC and 

CD. The center of such a circle must be on the diagonal CA of the square. Let x be the distance of the center 

from C. Pythagorean theorem says that 
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where  is the radius of the circle. It is labelled by the coordinate x. The point A has coordinate . 

The circle passes through A if and only if 

 

We have 

 

Therefore 

 

Figure 8.3. Exercise 8.4 [90]. 

 

Exercise 8.5. In rectangle ABCD side AB is three times longer then BC. The distance of an interior point P 

from the vertices B, A and D is PB = , PA =  and PD = 2. What is the area of the rectangle. 

 

For the solution see Exercise 1.44 [30] in section 1.10, Chapter 1. 

Exercise 8.6. The shortest diagonal of a parallelogram has length 8, the angle of the diagonals is 45 degree, and 

its area is 40. Calculate the perimeter of the parallelogram. 

 

xca_tangentcircles
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Figure 8.4. Exercise 8.6 [91]. 

 

Solution. The area must be the sum of the areas of triangles AFB, BFC, CFD and DFA. They are pairwise 

congruent and we also know that the diagonals of a parallelogram bisect each other. If x=AF=FC then 

 

Since sin 45 = sin (180 - 45) it follows that x = . Using the cosine rule in the triangle BFC 

 

In a similar way 

 

Therefore BC 5.09, AB 10.29 and the perimeter is P 30.76. 

Exercise 8.7. The length of the midline of a symmetric trapezium is 10, the diagonals are perpendicular to each 

other. What is the area of the trapezium. 

 

Figure 8.5. Exercise 8.7 [92]. 

 

Solution. Because of the symmetry 

 

The parallel bases can be computed by the Pythagorean theorem: 
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Since the length of the mid - line is 10 we have that 

 

From here 

 

and the area is 

 

Exercise 8.8. The diagonals of a trapezium are perpendicular. The lengths of the parallel sides are 17 and 34, 

one of the legs is . How long is the second leg, what is the area, and the height of the trapezium. 

 

Figure 8.6. Exercise 8.8 [93]. 

 

Solution. The triangles AEB and CED are similar. The ratio of the similarity is just 2=34/17. Therefore 

 

Suppose that 

 

By Pythagorean theorem in the right triangles BEC and CED: 

 

 

Therefore 

 

and CE=8. This means that AE=16 and BE=30. The second leg is 
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The area is 

 

Since 

 

the height of the trapezium is m = 1080/51 = 360/17. 

Exercise 8.9. The parallel bases of a symmetrical trapezoid are 10 and 20. The height is 4. 

• Calculate the area of the trapezoid. 

• Calculate the angles of the trapezoid. 

 

Exercise 8.10. The longest base of a symmetrical trapezoid is 20, the length of the legs is 5, the height is 4. 

• Calculate the area of the trapezoid. 

• Calculate the angles of the trapezoid. 

 

Exercise 8.11. In kite ABCD we know that AB = BC = 2 and CD = DA. At vertex A the angle is 120 degree, 

and at D the angle is 60 degree. Calculate the unknown angles, sides and diagonals of the kite and furthermore, 

the radius of the inscribed circle. 

 

Figure 8.7. Exercise 8.11 [94]. 

 

Solution. Since we have equal adjacent sides it follows that both ACD and ABC are equilateral triangles. 

Therefore we have a rhombus with sides of length 2. The angles are alternately 60 and 120 degree in measure. 

Since ABC is an equilateral triangle the diagonal AC is 2 too. To compute the length of the longer diagonal we 

can use the cosine rule 

xca_8_1_11_
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The radius of the inscribed circle is just 

 

where the semiperimeter s is 4. To compute A we use the trigonometric formula for the area 

 

Therefore 

 

Exercise 8.12. The perimeter of the rhombus is 40, its area is 96. What are the angles, sides, and diagonals of 

the rhombus. 

 

Solution. If a denotes the common length of the sides of the rhombus then 40 = 4a, i.e. a = 10. To compute the 

area we can write that 

 

and, consequently . This means that the angles are  and . Using 

the cosine rule systematically the length of the diagonals are 

 

 

Since  is an acute angle 

 

Therefore 

 

Exercise 8.13. The length of the two diagonals of a rhombus are given: 6 and 12. 

• Calculate the area of the rhombus! 

• Calculate the length of the sides of the rhombus! 

• Calculate the angles of the rhombus! 

 

Exercise 8.14. The longer diagonal of a rhombus is given: 12, and one of the angle of the rhombus is 60 degree 

in measure. 

• Calculate the area of the rhombus. 

• Calculate the length of the sides of the rhombus. 

 

Exercise 8.15. The length of the side of a rhombus is just the geometric mean of the diagonals. What is the ratio 

of the two diagonals. 
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Solution. Let e and f be the lengths of the diagonals. The diagonals of a rhombus are perpendicular to each other 

because of the geometric characterization of the perpendicular bisector. Therefore 

 

On the other hand . This means that 

 

and 

 

where x = e : f. Therefore 

 

and 

 

Exercise 8.16. Prove that 

 

 

Exercise 8.17. Two persons are going to meet within one hour. They agree that any of them will wait for the 

other at most 20 minutes. What is the probability of the meeting. 

 

Figure 8.8. Geometric probability. 
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Solution. First of all we should find a mathematical model of the problem. Let x and y be the arriving time of 

persons A and B, respectively. These are randomly chosen from the interval [0,1]. In other words any event 

correspond to a point P(x,y) of the square with sides of unit length. A and B meet if and only if the absolute 

value of the difference y - x is less or equal than 0.3 hour=20 minutes. We are going to compute what is the area 

of the set of points satisfying the inequalities 

 

These points represent successful outcomes. Using the area which is missing: 

 

Therefore the probability is 
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Chapter 9. Polygons 

1. 9.1. Polygons 

In general polygons are plane figures bounded by a finite chain of straight line segments. Since they are 

typically investigated by using a triangle decomposition we agree that any triangle is a polygon. 

Definition. A simple closed polygon is a finite union of line segments 

 

where , ...,  are distinct points in the plane,  and the line segments have no other points in 

common except their endpoints, each of which lies on two segments. 

The boundary of such a shape is a chain of straight line segments. The positions where the chain is broken at are 

called vertices. The straight line segment between two adjacent vertices is called a side/edge of the polygon. The 

polygon is called convex if there are no concave interior angles, i.e. all the interior angles are of measure less 

than 180 degree. 

Footnote. The name edge is typically used in graph theory. 

Figure 9.1. A polygon. 

 

Theorem 9.1. The sum of interior angles of a polygon having n sides is 
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Proof. In case of convex polygons the result follows easily from the triangle decomposition. Otherwise the 

statement can be proved by induction on the number of concave interior angles. 

 

The sum of the diagonals. Suppose that the polygon has n > 3 vertices. If A is one of them then we have n - 1 

vertices left to join with A. These give two sides (adjacent vertices) and n - 3 diagonals. Therefore the sum of 

the different diagonals of the polygon having n vertices is 

 

because each diagonal belongs to exactly two vertices. 

The area of a polygon can be computed as the sum of the areas of triangles constituting the polygon. 

One of the most important special classes of polygons is formed by regular polygons. They are automatically 

inscribed in a circle in the following way. Let a circle be given and divide the perimeter into n equal parts by the 

points 

 

where n is geater or equal than 3. Each of the chords 

 

belong to the central angle 360/n degree in measure. They are the sides of the regular n–gon inscribed in the 

given circle. The size depends on the radius of the circle. 
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Chapter 10. Circles 

Definition. Let a point O in the plane be given. If r is a positive real number then the set of points having 

distance r from O is called a circle. The point O is the center and r is the radius of the circle. A disk means the 

set of points having distance at most r from the given point O. The circle is the boundary of the disk with the 

same center and radius. 

The most important problems related to a circle is the problem of tangent lines and the problem of area. 

1. 10.1. Tangent lines 

Let a line l be given. The definition of the circle suggests us to classify the points of the line by the distance 

from the center of the circle. At first suppose that l does not pass the center O and consider the line e passing 

through O such that e is perpendicular to l. Using Pythagorean theorem it can be easily seen that the foot F has 

the smallest distance from the center among the points of l. Therefore if 

• OF=r then the line has exactly one common point with the circle and all the other points are external. In this 

case we say that the line is tangent to the circle at the point F of tangency. 

• OF < r then the line intersect the circle at exactly two points. In this case we speak about a secant line. 

• OF > r then l has no points in common with the circle. 

The discussion of the lines passing through the center is obvious. 

Definition. The line l is tangent to a circle if they have exactly one common point and all the other points on the 

line are external. 

Remark. Although the condition all the other points on the line are external is redundant in case of tangent 

lines to a circle but not in general as the case of conic sections (ellipse, hyperbola, parabola) shows. To construct 

tangent lines in general one need taking the limit again. The tangent line is the limit position of chords passing 

through a given point of the curve. 

Exercise 10.1. Find the tangent lines to the parabola given by the graph of the function 

 

 

Solution. Let  be fixed and consider the chord passing through the points 

 

The slope 

 

is obviously depend on x. What happens if x tends to 1. Since the division by zero is impossible we have to 

eliminate the term x - 1. Since 

 

the slope at the limit position must be 2. The equation of the tangent line at x=1 is 

 

Theorem 10.1. If a line is tangent to a circle then it is perpendicular to the radius drawn to the point of 

tangency. 
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The construction of the tangent line to a circle from a given external point is based on Thales' theorem. 

Suppose that P is an external point and F is the point of tangency to a circle with center O. Since PFO is a right 

triangle the point F must be on the perimeter of the circle drawn from the midpoint of the segment OP with 

radius OP/2. 

Theorem 10.2. Let a circle with center O be given and suppose that P is an external point. The tangent lines 

from P to the circle can be constructed as follows: 

• draw a circle with radius r = OP/2 around the midpoint of OP, 

• the circle constructed in the first step meets the given circle at two points F and G, 

• FP and GP are tangent segments to the given circle. 

Figure 10.1. Tangent segments from an external point. 

 

To compute the common length of the tangent segments PF and PG we can use Pythagorean theorem: 

 

Corollary 10.3. The tangent segments passing through a given external point are of the same length. 

For two circles there are generally four distinct segments that are tangent to both of them. If the centers are 

separated then we speak about internal bitangent segments. Otherwise we have external bitangent segments. If 

the circles 

• are outside each other then we have two external and two internal bitangent segments symmetrically about the 

line of the centers. 

• are tangent to each other from outside then we have a common (internal) tangent line at the contact point and 

two external bitangent segments symmetrically about the line of the centers. 

• intersect each other then we have no inner bitangent segments or lines. 

• are tangent to each other from inside then we have only a common (external) tangent line at the contact point. 

Exercise 10.2. How to construct common bitangent segments to two circles? 

 

Figure 10.2. External bitangent segments. 
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Figure 10.3. Internal bitangent segments. 

 

Solution. For the generic cases see figures 10.2 and 10.3. 

2. 10.2. Tangential and cyclic quadrilaterals 

Regular geometric objects can be always imaged together with their inscribed or circumscribed circles. Another 

type of objects inscribed in a circle are the so - called cyclic quadrilaterals. This means that the vertices are lying 

on the same circle. 

Theorem 10.4. The quadrilateral ABCD is a cyclic quadrilateral if and only if the sums of the opposite angles 

are equal. 

Proof. The opposite angles of a cyclic quadrilateral are lying on complement arcs which means that the sum of 

the corresponding central angles is 360 degree in measure. Therefore the sum of the opposite angles in a cyclic 

quadrilateral must be 180 degree. Conversely, suppose that for example 

 

and, consequently, 

 

On the other hand the triangles DAB and BCD have a common side BD. Using the extended sine rule 
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we have that the radius of the circumscribed circles of the triangles DAB and BCD must be the same. The 

circumscribed circles pass simultaneously through the points B and D. Therefore they are coincide or the 

(different) centers are situated symmetrically about the line of BD because of the common radius. This is 

impossible because the angles  and  can not be simultaneously acute (or obtuse) angles. 

 

Definition. A quadrilateral is called tangential if it has an inscribed circle which touches all the sides of the 

quadrilateral. 

Theorem 10.5. A convex quadrilateral is tangential if and only if the sum of the opposite sides are equal. 

If we have a tangential quadrilateral then the sides are constituted by tangent line segments to the inscribed 

circle. If E, F, G and H denote the touching points on the sides AB, BC, CD and DA respectively, then we have 

that 

 

 

because corollary 10.3 [101] says that the tangent line segments from an external point to a given circle are of 

equal length. Therefore the sum of the lengths of the opposite sides are equal. The common value is obviously 

the half of the perimeter of the quadrilateral. The converse statement fails without the condition of convexity as 

concave kites show. 

Figure 10.4. Cyclic and tangential quadrilaterals. 

 

3. 10.3. The area of circles 

To compute the area of a circle we use an approximation based on inscribed regular n - gons. For the sake of 

simplicity suppose that the circle has radius one. The vertices  of a regular n - gon inscribed in a 

circle divides the perimeter into n equal parts. Therefore the area can be computed as the sum of the areas of the 

congruent triangles 

 

i.e. 

cor_tangentsegments
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To simplify the procedure we consider the area 

 

of  - gons. We are going to express the area 

 

in the (k+1)th step in terms of . Since 

 

we have by the additional rules that 

 

because of the trigonometric version of the Pythagorean theorem. Therefore 

 

 

and, consequently, 

 

We have the following numerical values: 

 

 

Theoretically: , 

 

 

and so on, see Viéte's formula 1.9 for 2/ . 
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Chapter 11. Exercises 

1. 11.1. Exercises 

Exercise 11.1. Let a circle with radius 2 be given. The distance between the point  and the center of the circle 

is . Calculate the common length of the tangent segments from  to the given circle and find the length of the 

shorter arc along the circle between the contact points  and . 

 

Figure 11.1. Exercise 11.1 [105]. 

 

Solution. The tangent segments have a common length 

 

If  is the central angle belonging to the shorter arc between A and B then 

 

Therefore 

 

i.e. 

 

Exercise 11.2. The radius of a circle is 10, the tangent at the point C of the circle has an inclination angle 30 

degree to the chord CB. Otherwise AC is the diameter of the circle. Calculate the area and the perimeter of the 

triangle ABC. 

 

Figure 11.2. Exercise 11.2 [105]. 
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Solution. Using Thales theorem ABC is a right triangle - the angle of 90 degree in measure is situated at B. The 

length of the hypothenuse AC is 20. The angle at C is just 60 because the chord BC has an inclination angle 30 

degree to the tangent at the point C. The legs are 

 

Therefore the area is 

 

Exercise 11.3. Let AB be a diameter of a circle of unit radius. Let C be a point of the tangent to the circle at A 

for which AC is of length  long. Calculate the area of the common part of the triangle ABC and the circle. 

 

Figure 11.3. Exercise 11.3 [106]. 

 

Solution. The angle at B can be easily calculated from the formula 

xca_11_1_3_
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Therefore the central angle lying on the same arc is of degree 120 in measure. We have that 

 

The area of the triangle OBD can be computed as 

 

i.e. 

 

Exercise 11.4. Draw a rhombus around a circle of area 100, so that the rhombus has an angle 30 degree. 

Calculate the area of the rhombus. 

 

Figure 11.4. Exercise 11.4 [107]. 

 

Solution. The radius of the circle is 10/ . If a is the common length of the sides of the circumscribed rhombus 

then 

 

Therefore the area of the rhombus is 

 

Exercise 11.5. Construct an equilateral triangle above the diameter of a circle with radius r. What is the area of 

the triangle lying outside the circle. 

 

Figure 11.5. Exercise 11.5 [107]. 
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Solution. Let AB be the diameter of the circle and consider the common points A' and B' on the perimeter of the 

circles. Since OAA' and OBB' are equilateral triangles with sides of length r it follows that the area outside from 

the circle is just 

 

Exercise 11.6. A circle of unit radius touches the legs of a right angle. What are the radii of the circles which 

touches the two legs of the right angle and the given circle? 

 

Solution (cf. Exercise 8.4 [90]). Divide the problem into two parts. At first let us concentrate on the circles 

touching the legs of a right angle. The center of such a circle must be on the bisector of the angle. Let x be the 

distance of the center from the vertex. Pythagorean theorem says that 

 

where  is the radius of the circle. It is labelled by the coordinate x. In case of  we have that x= . Two 

circles are tangent to each other from outside if and only if the distance of the centers is the sum of the radii: 

 

i.e. 

 

Therefore 

 

Exercise 11.7. Draw a circle around the vertex of an angle of 120 degree in measure. Calculate the radius of the 

circle which touches the given circle inside, and the legs of the angle. 

 

Figure 11.6. Exercise 11.7 [108]. 

xca_tangentcircles
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Solution. Let R be the radius of the circle drawn around the vertex O of an angle of 120 degree in measure. If A 

and B denote the points of tangency on the legs of the angle then AB=r, where r is the radius of the circle which 

touches the given circle inside and the legs of the angle. From Pythagorean theorem 

 

where 

 

Therefore 

 

Exercise 11.8. Three sides of a triangle are 13, 14 and 15. What is the radius of the circle whose center lies on 

the longest side of the triangle and touches the other sides. 

 

Figure 11.7. Exercise 11.8 [109]. 

 

Solution. Consider the radii of the circle which are perpendicular to the sides of lengths 13 and 14, respectively. 

The area of the triangle can be computed as the sum 

 

xca_11_1_8_
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On the other hand 

 

because of Héron's formula. Finally 

 

Exercise 11.9. Let R and r denote the radii of two circles touching each other outside and R > r. Calculate the 

length of the common internal tangent between the common external tangents. 

 

Figure 11.8. Exercise 11.9 [110]. 

 

Solution. Because of the symmetry it is enough to compute the half of the internal common tangent. If T is the 

point of tangency of the circles it follows that 

 

Therefore the length of the internal common tangent between the external common tangents is just AB. On the 

other hand 

 

and, consequently, 

 

Exercise 11.10. The length of the shortest diagonal of a regular 8–gon is given: 10. What is the length of the 

sides and the area of the polygon? 

 

xca_11_1_9_


 Exercises  

 111  
Created by XMLmind XSL-FO Converter. 

Solution. Let  be the vertices of a regular 8–gon inscribed in a circle with center O. The shortest 

diagonal connecting  and  belongs to the central angle of 90 degree in measure because 

 

Using Pythagorean theorem it follows that 

 

Therefore 

 

and the area is 

 

Exercise 11.11. All sides of a symmetrical trapezoid touch a circle. The parallel bases are 10 and 20. 

• Calculate the angles of the trapezoid. 

• Calculate the area of the trapezoid. 

 

Exercise 11.12. What are the angles of a rhombus if its area is just twice of the area of the inscribed circle? 

 

Exercise 11.13. The length of the shortest diagonal of a regular 8–gon is given: 20. 

• What is the length of the sides? 

• What is the area of the polygon? 

 

Exercise 11.14. The length of the side of a regular 6–gon is given: 8. 

• Calculate the angles of the polygon. 

• What is the length of the shortest diagonal? 

• What is the area of the polygon? 

 

Exercise 11.15. Two circles of radius 5 intersect each other. The distance of the their centers is 8. Calculate the 

area of the common part of the circles. 

 

Exercise 11.16. A polygon of 12 sides can be inscribed into a circle. Six of the sides have length , and the 

other six sides are equal to . What is the radius of the circle? 

 

Figure 11.9. Exercise 11.16 [111]. 
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Solution. Let O be the center of the circle and consider the vertices A, B and C of the polygon such that 

 

If  and  denote the central angles belonging to AB and BC, respectively we have that 

 

and, consequently 

 

Therefore the triangle AOC is equilateral and AC = r. To finish the solution we compute the angle at B in the 

triangle ABC. Choose the point B' on the circle opposite to B. Then B'ABC form a cyclic quadrilateral and the 

sum of the measures of the opposite angles must be 180 degree. The inscribed angle theorem says that 

 

and, consequently, 

 

Using the cosine rule we have that 
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Chapter 12. Geometric 
transformations 

1. 12.1. Isometries 

Definition. The point transformation  is called an isometry if it preserves the distance between the 

points: 

 

According to the case SSS of the congruence of triangles any isometry preserves the angles and, by the 

characterization of parallelism, the parallelism: parallel lines are transformed into parallel lines under any 

isometry. In what follows we classify the possible cases in terms of the fixpoints. 

Theorem 12.1. If an isometry has two fixpoints A and B then for any point X of the line AB we have 

 

Proof. Since A'=A and B'=B we have that 

 

Therefore X' must be on 

• the circle around A with radius AX, 

• the circle around B with radius BX. 

Since A, B and X are collinear points these circles are tangent to each other at the uniquely determined point X 

of tangency: X'=X. 

 

Corollary 12.2. If an isometry has three not collinear fixpoints then it must be the identity. 

Proof.  Suppose that A, B and C are not collinear fixpoints. Let D be an arbitrary element in the plane and 

consider the parallel line to BC passing through D. This line intersect both AB and AC at the points F and G, 

respectively. By theorem 12.1 [113] it follows that F'=F, G'=G and D'=D. 

 

The case of two fixpoints gives the identical transformation or the reflection about the line (axis) determined by 

the fixpoints A and B. In the sense of theorem 12.1 [113] for any element of the line AB we have that X'=X. 

What about the points not in the axis of the reflection? Let Y be one of them. Since 

 

and 

 

it follows by the geometric characterization of the perpendicular bisector that the line AB is just the 

perpendicular bisector of the segment YY'. 

The case of exactly one fixpoint results in the notion of rotation about the uniquely determined fixpoint O. 

Translations are typical examples on isometries without fixpoints. 

thm_fixpoints
thm_fixpoints
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Definition. Two subsets in the plane are called congruent if there is an isometry which transform them into each 

other. 

According to the principle of permanence we should check that in case of two congruent triangles ABC and 

DEF there is an isometry which maps ABC into DEF. The basic steps of the construction can be formulated as 

follows: 

• If A=D then we use the identical transformation as the first. Otherwise reflect the triangle ABC about the 

perpendicular bisector of the segment AD. This results in a triangle A'B'C', where A'=D 

• If B'=E then we use the identical transformation as the second. Otherwise reflect the triangle A'B'C' about the 

perpendicular bisector of the segment B'E. This results in a triangle A”B”C”, where B”=E. What about A” ? 

To answer the question we should compare the distances A'B' and A'E: 

 

because the triangles ABC and DEF are congruent. Using the first step 

 

The geometric characterization of the perpendicular bisector implies that A' is lying on the axis of the 

reflection. Therefore 

 

• If C”=F then we use the identical transformation as the third. Otherwise reflect the triangle A”B”C” about the 

perpendicular bisector of the segment C”F. This results in a triangle A”'B”'C”', where C”'=F. What about A”' 

and B”'? 

We are going to prove that 

 

In order to check the first statement we should compare the distances A”C” and A”F: 

 

because the triangles ABC and DEF are congruent. Using the first and the second steps 

 

The geometric characterization of the perpendicular bisector implies that A” is lying on the axis of the 

reflection. Therefore 

 

The proof of the second statement is similar: 

 

because the triangles ABC and DEF are congruent. Using the second step 

 

The geometric characterization of the perpendicular bisector implies that B” is lying on the axis of the 

reflection. Therefore 

 

Figure 12.1. The principle of permanence. 
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Remark. The discussion of the principle of permanence shows that for any pair of congruent triangles ABC and 

DEF there exists an isometry such that 

 

Corollary 12.2 [113] provides the unicity of such an isometry too. Therefore any isometry is uniquely 

determined by the images of three not collinear points. At the same time any isometry is the product of at most 

three reflections about lines. This gives a new starting point for the characterization: any isometry is one of the 

following types 

• reflection about a line, 

• the product of two reflections about lines, 

• the product of three reflections about lines. 

Exercise 12.1. Prove that the product of two reflections about lines is a rotation or a translation depending on 

whether the axes are concurrent or parallel. 

 

2. 12.2. Similarities 

Definition. The point transformation  is called a similarity if it preserves the ratio of distances 

between the points: 

 

where the positive constant  is called the similarity ratio. 

According to the case S'S'S' of the similarity of triangles any similarity transformation preserves the angles and, 

by the characterization of parallelism, the parallelism: parallel lines are transformed into parallel lines under any 

similarity. In what follows we classify the possible cases in terms of the fixpoints. 

Remark. Isometries are similarities with ratio 1. 

Theorem 12.3. If a similarity is not an isometry then it has a uniquely determined fixpoint. 

cor_fixpointscor
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Proof. It is clear that if we have two different fixpoints then the transformation is an isometry. Therefore the 

number of fixpoints is at most one. For the proof of the existence we can refer to [5], where an elementary ruler 

construction can be found for finding the fixpoint of a similarity transformation in the plane. 

 

An important subclass of similarities is formed by the central similarities; see the proof of theorem 4.5 [51]. 

Corollary 12.4. Any similarity can be given as the product of a central similarity and an isometry. 

Proof. Let  be a similarity with ratio . If  then we have an isometry. Otherwise the fixpoint C of  is 

uniquely determined in the sense of theorem 12.3 [115]. Therefore the product of  and the central similarity of 

scaling  with respect to C gives an isometry . 

 

Remark. Since C must be the fixpoint of  we have the following possible cases: if  is 

• the identity then  is a central similarity, 

• a reflection about a line passing through C then  is a so - called stretch reflection. 

• a rotation about C then  is a so - called stretch rotation or spiral similarity. 

thm_eulerline
thm_fixpointsim
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Chapter 13. Classical problems II 

Everybody knows the famous geometric principle about the shortest way between two points. In the following 

problems we can not use the principle in a direct way because the straight line segments are forbidden by some 

constraints. The indirect way is based on using geometric transformations to create a new configuration for the 

direct application. To keep all the metric relationships the transformations must be isometries. 

1. 13.1. The problem of the bridge 

Problem. Suppose that there are two villages A and B on different banks of a river with constant width. We can 

across the river by a bridge in such a way that it is perpendicular to the banks. Find the best position for the legs 

of the bridge by minimizing the sum of distances 

 

where X and Y denotes the position of the legs of the bridge. 

Figure 13.1. The problem of the bridge. 

 

Solution. Since the river is of constant width, the invariant term XY can be omitted. The translation 

 shows that the sub - trips AX and YB correspond to a two - steps long polygonal chain from A' to 

B. The straight line segment A'B indicates the optimal position for the legs of the bridge. 

2. 13.2. The problem of the camel 

Problem. Suppose that there are two villages A and B on the same bank of an unswerving river. The distance 

between them is too large for a camel to walk from A to B without drinking. Find the best position for the camel 

to have a drink by minimizing the sum of distances 

 

where X denotes the position along the river. 

Figure 13.2. The problem of the camel. 
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Solution. Instead of a reduction by an invariant quantity (see the problem of the bridge) we use an expansion by 

an invariant quantity to solve the problem of the camel: minimize the sum 

 

where A' is the image of A under the reflection about the line of the river. The straight line segment A'B 

indicates the optimal position for the camel to have a drink. 

3. 13.3. The Fermat point of a triangle 

Problem. Find the point of the triangle ABC which minimizes the sum of distances 

 

Figure 13.3. The Fermat point of a triangle. 

 

Solution. Consider a rotation about B with angle 60 degree into clockwise direction. Since the triangle XBX' is 

equilateral the sub - trip BX can be substituted by XX'. On the other hand XC=X'C' because rotations are 

isometries. Therefore every choice of X corresponds to a three - steps - long polygonal chain from A to C'. Since 

the straight line segment AC' gives the minimal length we have that the minimizer satisfies the conditions 

 

and 
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Figure 13.3 shows how to construct the minimizer by using equilateral triangles lying on the sides of the triangle 

ABC. The method and the argumentation is working as far as all the angles of the triangle ABC is less than 120 

degree in measure. 

Exercise 13.1. Explain why the method fails in case of an angle of measure greater or equal than 120 degree. 

 

Remark. In case of a triangle having an angle of measure greater or equal than 120 degree the solution is just 

the vertex where the critical value of the measure is attained or exceeded. 

Definition. The point of the triangle ABC which minimizes the sum of distances 

 

is called the Fermat-point of the triangle. 
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Chapter 14. Longitudes and latitudes 

Problem. Find the distance between A and B on the surface of the Earth. 

Figure 14.1. Longitudes and latitudes I. 

 

Solution. In geography the longitude and the latitude are used to determine positions on the surface of the Earth. 

The longitude  is a rotational angle to specify the east-west position of the point relative to the Greenwich 

meridian across Royal Observatory, Greenwich. The latitude  is the inclination angle relative to the plane of 

the Equator. In what follows we will use the signs + and - instead of north and south or east and west. To 

simplify the formulas in the calculation we suppose that the radius of the Earth is 1 unit. 

First step. Pythagorean theorem in the right triangle ABC gives the Euclidean distance between A and B: 

 

Since AC is the vertical difference between the points, 

 

To compute CB consider the projected segment A'B' in the equatorial plane: 

 

Using the cosine rule we have that 
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Therefore 

 

 

Figure 14.2. Longitudes and the latitudes II. 

 

Second step. Using AB we can compute the central angle  in the triangle AOB by the cosine rule 

 

because the radius of the Earth is chosen as a unit. 

Third step. The distance between A and B on the surface of the Earth is just the length of the shorter arc joining 

A and B along the circle cutted by the plane AOB: 

 

Remark. The distance in kilometers can be expressed from the formula 
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where  km. 

Exercise 14.1. Find the distances between World cities on the surface of the Earth. 
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Part II. Analytical Geometry 
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Chapter 15. Rectangular Cartesian 
Coordinates in a Plane 

1. 15.1. Coordinates in a plane 

Let us draw in the plane two mutually perpendicular intersecting lines  and  which are termed coordinate 

axes (Fig. 15.1). The point of intersection  of the two axes is called the origin of coordinates, or simply the 

origin. It divides each of the axes into two semi-axes. One of the direction of the semi-axes is conventionally 

called positive (indicated by an arrow in the drawing), the other being negative. 

Figure 15.1. The coordinate system. 

 

Any point  in a plane is specified by a pair of numbers – called the rectangular coordinates of the point  – 

the abscissa  and the ordinate  according to the following rule. 

Through the point  we draw a straight line parallel to the axis of ordinates  to intersect the axis of 

abscissas  at some point  (Fig. 15.2). The abscissa of the point  should be understood as a number  

whose absolute value is equal to the distance from  to  which is positive if  belong to the positive semi-

axis and negative if  belongs to the negative semi-axis. If the point  coincides with the origin, then we put 

 equal to zero. 

The ordinate  of the point  is determined in a similar way. 

We shall use following notation:  which means that the coordinates of the point  are  (abscissa) and  

(ordinate). 

Figure 15.2. Coordinates of a point. 
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The coordinate axes separate the plane into four right angles termed the quadrants as shown in Fig. 15.3. Within 

the limits of one quadrant the signs of both coordinates remain unchanged. As we see in the figure, the 

quadrants are denoted and called the first, second, third, and fourth as counted anticlockwise beginning with the 

quadrant in which both coordinates are positive. 

Figure 15.3. Coordinates of a point. 

 

If a point lies on the -axis (i.e. on the axis of abscissas) then its ordinate  is equal to zero; if a point lies on the 

-axis, (i.e. on the axis of ordinates), then its abscissa  is zero. The abscissa and ordinate of the origin (i.e. of 

the point ) are equal zero. 

The plane on which the coordinates  and  are introduced by the above method will be called the -plane. An 

arbitrary point in this with the coordinates  and  will sometimes be denoted simply . 

For an arbitrary pair of real numbers  and  there exists a unique point  in the -plane for which  will be 

its abscissa and  its ordinate. 

Indeed, suppose for definiteness , and . Let us take on the positive semi-axis  a point  at the 

distance  from the origin , and a point  on the negative semi-axis  at the distance  from . We then 
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draw through the points  and  straight lines parallel to the axes  and , respectively (Fig. 15.4). These 

lines will intersect at a point  whose abscissa is obviously , and ordinate is . In other case ( , ; 

,  and , ) the proof is analogous. 

Figure 15.4. Example of coordinates. 

 

Let us consider several important cases of analytical representation of domains on the -plane with the aid of 

inequalities. A set of points of the -plane for which  is a half-plane bounded by a straight line passing 

through the point  parallel to the axis of ordinates (Fig. 15.5). A set of points for which  

represents the intersection (i.e. the common portion) of the half-planes specified by the inequalities  and 

. Thus, this set is a band between the straight lines parallel to the -axis and passing through the points 

 and  (Fig. 15.5). A set of points for which ,  is a rectangle with vertices at points 

for which ,  is a rectangle with vertices at points  , , . (Fig. 15.6) 

Figure 15.5. Example of a half plane and a strip. 

 

Figure 15.6. Example of a rectangle. 
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In conclusion, let us solve the following problem: Find the area of a triangle with vertices at points , 

, . Let the triangle be located relative to the coordinate system as is shown in Fig. 15.7. In 

this position its area is equal to the difference between the area trapezium  and the sum of the areas 

of the trapezia  and . 

Figure 15.7. Area of a triangle. 

 

The bases of the trapezium  are equal to  and , its altitude being equal to . Therefore, the 

area of the trapezium 

 

The areas of two other trapezia are found analogously: 
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The area of the triangle : 

 

This formula can be rewritten in a convenient form: 

 

Though the above formula for computing the area of the triangle has been derived for a particular location of the 

triangle relative to the coordinate system, it yields a correct result (up to a sign) for any position of the triangle.  

2. 15.2. Exercises 

1. What is the location of the points of the -plane for which 

(a) , (b) ? 

2. What is the location of the points of the -plane for which (a) , (b) , ? 

3. Find the coordinates of a point symmetrical to the point  about the -axis ( -axis, the origin). 

4. Find the coordinates of a point symmetrical to the point  about the bisector of the first (second) 

quadrant. 

5. How will the coordinates of the point  change if the -axis is taken for the -axis, and vice versa? 

6. How will the coordinates of the point  change if the origin is displaced into the point  

without changing the directions of the coordinate axes? 

7. Find the coordinates of the mid-points of the sides of a square taking its diagonals for the coordinate axes. 

8. It is known that three points , ,  are collinear. How can one find out which of these 

points is situated between the other two? 

3. 15.3. The distance between points 

Let there be given on the -plane two points:  with the coordinates ,  and  with the coordinates , . 

It is required to express the distance between the points  and  in terms of their coordinates. 

Suppose  and . Through the points  and  we draw straight lines parallel to the coordinate 

axes (Fig. 15.8). The distance between the points  and  is equal to , and the distance between the 

points  and  is equal to . Applying the Pythagorean theorem to the right triangle , we get 

 

Figure 15.8. Distance of two points. 
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Though the formula  for determining the distance between points has been derived by us proceeding from the 

assumption that , , it remains true for other cases as well. Indeed, for ,   is equal 

to  (Fig. 15.9). The same result is obtained using the formula . For ,  we get a similar 

result. If ,  the points  and  coincide and the formula  yields . 

Figure 15.9. Distance of two special points. 

 

As an exercise, let us find the coordinates of the centre of a circle circumscribed about a triangle with the 

vertices , , and . 

Let , be the centre of the circumcircle. Since it is equidistant from the vertices of the triangle, we derive the 

following equations for the required coordinates of the centre of the circle (  and ). Thus, we have 

 

or after obvious transformations 
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Thus, we have a system of two linear equations for determining the unknowns  and . 

4. 15.4. Exercises 

1. Find on the -axis the coordinates of a point equidistant from the two given points , and . 

Consider the case , . 

2. Given the coordinates of two vertices  and  of an equilateral triangle . How to find the coordinates of 

the third vertex? Consider the case , . 

3. Given the coordinates of two adjacent vertices  and  of a square . How are the coordinates of the 

remaining vertices found? Consider the case , . 

4. What condition must be satisfied by the coordinates of the vertices of a triangle  so as to obtain a right 

triangle with a right angle at the vertex ? 

5. What condition must be satisfied by the coordinates of the vertices of a triangle  so that the angle  

exceeds the angle ? 

6. A quadrilateral  is specified by the coordinates of its vertices. How to find out whether or not is it 

inscribed in a circle? 

7. Prove that for any real , , , , ,  there holds the following inequality 

 

To what geometrical fact does it correspond? 

5. 15.5. Dividing a line segment in a given ratio 

Let there be given two different points on the -plane:  and . Find the coordinates  and  

of the point  which divides the segment  in the ratio . 

Figure 15.10. Dividing a line segment. 
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Suppose the segment  is not parallel to the -axis. Projecting the points , ,  on the -axis, we have 

(Fig. 15.10) 

 

Since the points , ,  have the same ordinates as the points , , , respectively, we get 

 

Consequently, 

 

Since the point  lines between  and ,  and  have the same sign. 

Therefore 

 

Whence we find 

 

If the segment  is parallel to the -axis, then 

 

The same result is yielded by the formula  which is thus true any positions of the points  and . 

The abscissa of the point  is found analogously. For it we get the formula 

 

We put . Then . 

Consequently, the coordinates of any point  of a segment with the end-points  and  may be 

represented at follows 

 

Let us find location of points  for  and . To do this in case of  we solve our formulas with 

respect to , . We get 

 

Hence, it is clear that the point  is situated on the line segment  and divides this segment in the 

ratio . Thus, for  our formulas yield the coordinates of the point lying on the extension of the 

segment  beyond the point . It is proved in a similar way that for  the formulas yield the coordinates 

of the point located on the extension of the segment  beyond the point . 

As an exercise, let us prove Ceva's theorem from elementary geometry. It states: It the sides of a triangle are 

divided in the ratio , , , taken in order of moving round the triangle (see Fig. 15.11), then the 
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segments joining the vertices of the triangle to the points of division of the opposite sides intersect in on one 

point. 

Figure 15.11. Ceva's theorem. 

 

Let , , and  be the vertices of the triangle and , ,  the points of division of the 

opposite sides (Fig. 15.11). The coordinates of the point  are: 

 

Let us divide the line segment  in the ratio . Then the coordinates of the point of division will be 

 

If the segment  is divided in the ratio , then we get the same coordinates of the point of division. 

The same coordinates are obtained when dividing the segment  in the ratio . Hence, the segments 

, , and  have a point in common, which was required to be proved. 

Let us note here that the theorems of elementary geometry on intersecting medians, bisectors, and altitudes in 

the triangle are particular cases of Ceva's theorem. 

6. 15.6. Exercises 

1. Given the coordinates of three vertices of a parallelogram: , , and . Find the coordinates 

of the fourth vertex and the centroid. 

2. Given the coordinates of the vertices of a triangle: , , and . Find the coordinates of the 

point of intersection of the medians. 

3. Given the coordinates of the mid-points of the sides of a triangle , , and . Find the 

coordinates of this vertices. 

4. Given a triangle with the vertices , , and . Find the coordinates of the vertices a 

homothetic triangle with the ratio of similarity  and the centre of similitude at point . 
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5. Point  is said to divide the line segment  externally in the ratio  if this point lies on a straight 

line joining the points  and  outside the segment  and the ratio of its distances from the points  and 

 is equal to . Show that the coordinates of the point  are expressed in terms of the coordinates 

,  of the points  and  by the formulas 

 

6. Two line segments are specified by the coordinates of their end-points. How can we find out, without using a 

drawing, whether the segments intersect or not? 

7. The centre of gravity of two masses  and  situated at points  and  is defined as a 

point  which divides the segment  in the ratio . 

Thus, its coordinates are: 

 

The centre of gravity of  masses  situated at points  is determined by induction. Indeed, if  is the centre 

of gravity of the first  masses, then the centre of gravity of all  masses is determined as the centre of 

gravity of two masses:  located at point , and , situated at point . We then derive the 

formulas for the coordinates of the centre of gravity of the masses  situated at points : 

 

7. 15.7. The equation of a circle 

Let there be given a curve on the -plane (Fig. 15.12). The equation  is called the equation of a 

curve in the implicit form if it is satisfied by the coordinates  of any point of this curve. Any pair of 

numbers , , satisfying the equation  represents the coordinates of a point on the curve. As is 

obvious, a curve is defined by its equation, therefore we may speak of representing a curve by its equation. 

Figure 15.12. Equation of a curve. 

 

In analytic geometry two problems are often considered: (1) given the geometrical properties of a curve, form its 

equation: (2) given the equation of a curve, find out its geometrical properties. Let us consider these problems as 

applied to the circle which is the simplest curve. 
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Suppose that  is an arbitrary point of the -plane, and  is any positive number. Let us form the 

equation of a circle with centre  and radius  (Fig. 15.13). 

Figure 15.13. Equation of a circle. 

 

Let  be an arbitrary point of the circle. Its distance from the centre  is equal to . According to Section 

15.3, the square of the distance of the point  from  is equal to . Thus, the coordinates 

,  of any point  of the circle satisfy the equation 

 

Conversely, any point  whose coordinates satisfy the equation  belongs to the circle, since its distance from 

 is equal to . 

In conformity with the above definition, the equation  is an equation of a circle with centre  and radius . 

We now consider the second problem for the curve given by the equation 

 

This equation can be rewritten in the following equivalent form: 

 

Whence it is seen than any point  of the curve is found at one and the same distance equal to  

from the point , and, hence, the curve is a circle with centre  and radius . 

Let us consider the following problem as an example illustrating the application of the method of analytic 

geometry: Find the locus of points in a plane the ratio of whose distances from two given points  and  is 

constant and is equal to . (The locus is defined as a figure which consists of all the points possessing the 

given geometrical property. In the case under consideration we speak of a set of all the points in the plane for 

which the ratio of the distances from the two points  and  is constant). 

Suppose that  is the distance between the points  and . We then introduce a rectangular Cartesian 

coordinate system on the plane taking the straight line  for the -axis and the midpoint of the segment  

for the origin. Let, for definiteness, the point  be situated on the positive semi-axis . The coordinates of the 

point  will then be: , , and the coordinates of the point  will be: , . Let  be an 

arbitrary point of the locus. The squares of its distances from the points  and  are respectively equal to 

 and . The equation of the locus is 



 Rectangular Cartesian Coordinates 

in a Plane 
 

 136  
Created by XMLmind XSL-FO Converter. 

 

or 

 

The locus represents a circle (called Apollonius' circle). 

8. 15.8. Exercises 

1. What peculiarities in the position of the circle 

 

relative to the coordinate system take place if 

 

2. Show that if we substitute in the left-hand member of the equation of a circle the coordinates of any point 

lying outside the circle, then the square of the length of a tangent drawn from this point to the circle is obtained. 

3. The power of a point  with reference to a circle is defined as the product of the segments of a secant drawn 

through the point  taken with plus for outside points and with minus for inside points. Show that the left-hand 

member of the equation of a circle  gives the power of this point with reference to 

a circle when the coordinates of an arbitrary point are substituted in it. 

4. Form the equation of the locus of points of the -plane the sum of whose distances from two given points 

 and  is constant and is equal to  (the ellipse). Show that the equation is reduced to the form 

, where . 

5. Form the equation of the locus of points of the -plane the difference of whose distances from two given 

points  and  is constant and is equal to  (the hyperbola). Show that the equation is reduced to 

the form  where . 

6. Form the equation of the locus of points of the -plane which are equidistant from the point  and the 

-axis (the parabola). 

9. 15.9. The equation of a curve represented by 
parameters 

Suppose a point  moves along a curve, and by the time  its coordinates are:  and . A system 

of equations 

 

specifying the coordinates of an arbitrary point on the curve as functions the parameter  is called the equation 

of a curve in parametric form. 

The parameter  is not necessarily time, it may be any other quantity characterizing the position of a point on the 

curve. 

Let us now form the equation of a circle in parametric form. 

Suppose the centre of a circle is situated at the origin, and the radius is equal to . We shall characterize the 

position of point  on the circle by the angle  formed by the radius  with the positive semi-axis  (Fig. 
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15.14). As is obvious, the coordinates of the point  are equal to , , and, consequently, the 

equation of the circle has such a form: 

 

Figure 15.14. Distance of two points. 

 

Having an equation of a curve in parametric form: 

 

we can obtain its equation in implicit form: 

 

To this effect it is sufficient to eliminate the parameter  from the equations , finding one equation and 

substituting into the other, or using another method. 

For instance, to get the equation of a circle represented by equations in parametric form (i.e. implicitly) it is 

sufficient to square both equalities and add then termwise. We then obtain the familiar equation . 

The elimination of the parameter from the equations of a curve represented parametrically not always yields an 

equation in implicit form in the sense of the above definition. It many turn out that it is satisfied by the points 

not belonging to the curve. In this connection let us consider two examples. 

Suppose a curve  is given by the equations in parametric form 

 

Dividing these equations by  and , respectively, squaring and adding them termwise, we get the equation 

 

This equation is obviously satisfied by all the points belonging to the curve . Conversely, if the point  

satisfies this equation, then there can be found an angle  for which , , and, consequently, 

any point of the plane which satisfies this equation, belongs to the curve . 

Let now a curve  be represented by the following equations 



 Rectangular Cartesian Coordinates 

in a Plane 
 

 138  
Created by XMLmind XSL-FO Converter. 

 

where 

 

Dividing these equations by  and , respectively, and then squaring them and subtracting termwise, we get the 

equation 

 

The points of the curve  satisfy this equation. But not any point which satisfies the equation belongs to . Let 

us, for instance, consider the point . We see that it satisfies the equation, but does not belong to the curve, 

since on the curve  . 

Sometimes the equation of a curve represented in implicit form is understood in a wider way. One does not 

require that any point satisfying the equation, belongs to the curve. 

10. 15.10. Exercises 

1. Show that the following equations in parametric form 

 

represent a circle of radius  with centre at point . 

2. Form the equation of a curve described by a point on the line segment of length  when the end-points of the 

segment slide along the coordinate axes (the segment is divided by this point in the ratio ). Take the angle 

formed by the segment with the -axis for the parameter. What is the shape of the curve if ? 

3. A triangle slides along the coordinate axes with two of its vertices. Form the equation of the curve described 

by the third vertex (Fig. 15.15). 

Figure 15.15. Exercise 3. 

 

4. Form the equation of the curve described by a point on a circle of radius  which rolls along the -axis. For 

the parameter take the path  covered by the centre of the circle and suppose that at the initial moment  

point  coincides with the origin. 
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5. A curve is given by the equation 

 

Show that, by introducing the parameter , we can obtain the following equations of this curve in 

parametric form: 
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Chapter 16. The Straight Line 

1. 16.1. The general equation of a straight line 

The straight line is the simplest and most widely used line. 

We shall now show that any straight line has an equation of the form 

 

where , ,  are constant. And conversely, if  and  are not both zero, then there exists a straight line for 

which  is its equation. 

Figure 16.1. Equation of a line. 

 

Let  and  be two different points situated symmetrically about a given straight line (Fig. 

16.1). Then any point  on this line is equidistant from the points  and . And conversely, any point  

which is equidistant from  and  belongs to the straight line. Hence, the equation of a straight line is 

 

Transposing all terms of the equation to the left-hand side, removing the squared parentheses, and carrying out 

obvious simplifications, we get 

 

Thus, the first part of the statement is proved. 

We now shall prove the second part. Let  and  be two different points of the -plane whose coordinates 

satisfy the equation . Suppose 

 

is the equation of the straight line . The system of equations 
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is compatible, it is a fortiori satisfied by the coordinates of the point , as well as of . 

Since the points , and  are different, they differ in at least one coordinate, say . Multiplying the first 

equation of  by  and the second one by , and subtracting termwise, we get 

 

This equation as a corollary of the equations  is satisfied when  and . But it is possible only if 

 

Hence it follows that 

 

which means that the equations  are equivalent. The second part of the statement is also proved. 

As was shown in Section 15.5, the points of a straight line passing through  and  allow the 

following representation 

 

Whence it follows that any straight line allows a parametric representation by equations of the form 

 

Conversely, any such system of equations may be considered as equations of a straight line in parametric form 

if  and  are not both equal to zero. This straight line is represented by the equation in implicit form 

 

2. 16.2. Particular cases of the equation of a line 

Let us find out peculiarities which happen in the location of a straight line relative to the coordinate system if its 

equation  is of a particular form. 

1. . In this case the equation of a straight line can be rewritten as follows 

 

Thus, all points belonging to the straight line have one and the same ordinate , and, consequently, the line 

is parallel to the -axis (Fig. 16.2). In particular, if , then the straight line coincides with the -axis. 

Figure 16.2.  –parallel. 
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2. . This case is considered in a similar way. The straight line is parallel to the -axis (Fig. 16.3) and 

coincides with it if  is also zero. 

3. . The straight line passes through the origin, since the coordinates of the latter  satisfy the equation 

of the straight line (Fig. 16.4). 

Figure 16.3.  –parallel. 

 

Figure 16.4. A line through the origin. 
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4. Suppose all the coefficients of the equation of the straight line are non-zero (i.e. the line does not pass through 

the origin and is not parallel to the coordinate axes). Then, multiplying the equation by  and putting 

, , we reduce it to the form 

 

Figure 16.5.   and  intersection 

 

The coefficients of the equation of a straight line in such a form (which is called the intercept form of the 

equation of a straight line) have a simple geometrical meaning:  and  are equal (up to a sign) to the lengths of 

the line segments intercepted by the straight line on the coordinate axes (Fig. 16.5). Indeed, the straight line 

intersects both the -axis  at point , and the -axis  at point . 

3. 16.3. Exercises 

1. Under what condition does the straight line 

 

intersect the positive semi-axis  (the negative semi-axis )? 
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2. Under what condition does the straight line 

 

not intersect the first quadrant? 

3. Show that the straight lines given by the equations 

 

are situated symmetrically about the -axis. 

4. Show that the straight lines specified by the equations 

 

are arranged symmetrically about the origin. 

5. Given a pencil of lines 

 

Find out for what value of the parameter  is a line of the pencil parallel to the -axis ( -axis); for what value of 

 does the line pass through the origin? 

6. Under what condition does the straight line 

 

bound, together with the coordinate axes, an isosceles triangle? 

7. Show that the area of the triangle bounded by the straight line 

 

and the coordinate axes is 

 

8. Find the tangent lines to the circle 

 

which are parallel to the coordinate axes. 

4. 16.4. The angle between two straight lines 

When moving along any straight line not parallel to the -axis  increases in one direction and decreases in the 

other. The direction in which  increases will be called positive. 

Suppose we are given two straight lines  and  in the -plane which are not parallel to the -axis. The angle 

 formed by the line  with the line  is defined as an angle, less than  by absolute value, through 

which the line  must be turned so that the positive direction on it is brought in coincidence with the positive 

direction on . This angle is considered to be positive if the line  is turned in the same direction in which the 

positive semi-axis  is turned through the angle  until it coincides with the positive semi-axis  (Fig. 16.6). 

Figure 16.6. Angle of two lines. 
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The angle between the straight lines possesses the following obvious properties: 

1. ; 

2.  when and only when lines are parallel or coincide; 

3. . 

Let 

 

be a straight line not parallel to the -axis . Multiplying the equation of the is line by  and putting 

, , we reduce it to the form 

 

The coefficients of the equation of a straight line in this form have a simple geometrical meaning: 

 is the tangent of the angle  formed by straight line with the -axis; 

 is the line segment (up to a sign) intercepted by the straight line on the -axis. 

Figure 16.7. The slope of a line. 
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Indeed, let  and  be two points on the straight line (Fig. 16.7). Then 

 

The -axis  is obviously intersected by the line at point . 

Let there be given in the -plane two straight lines: 

 

Let us find the angle  formed by the second line with the first one. Denoting by  and  the angles formed by 

the straight lines with the -axis, by virtue of property (3) we get 

 

Since the angular coefficients , , we get 

 

Whence  is determined, since . 

5. 16.5. Exercises 

1. Show that the straight lines  and  intersect at right angle. 

2. What angle is formed with the -axis by the straight line 

 

3. Form the equations of the sides of a right triangle whose side is equal to 1, taking one of the sides and the 

altitude for the coordinate axes. 

4. Find the interior angles of the triangle bounded by the straight lines , , and . 

5. Under what condition for the straight lines  and  is the -axis the bisector of the 

angles formed by them? 
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6. Derive the formula  for the angle  formed by the straight line ,  with the -

axis. 

7. Find the angle between the straight lines represented by the equations in parametric form: 

 

8. Show that the quadrilateral bounded by the straight lines 

 

is a rhombus and the coordinate axes are its diagonals. 

6. 16.6. The parallelism and perpendicularity of lines 

Suppose we have in the -plane two straight lines given by the equations 

 

Let us find out what condition must be satisfied by the coefficients of the equations of the straight lines for these 

lines to be (a) parallel to each other, (b) mutually perpendicular. 

Assume that neither of the straight lines is parallel to the -axis. Then their equations may be written in the form 

 

where 

 

Taking into account the expression for the angle between straight lines, we get the parallelism condition of two 

straight lines: 

 

or 

 

The perpendicularity condition of straight lines: 

 

or 

 

Thought the conditions  and  are obtained in the assumption that neither of the straight lines is parallel to 

the -axis, they remain true even if this condition is violated. 

Let for instance, the first straight line be parallel to the -axis. This means that, . If the second line is 

parallel to the first one, then it is also parallel to the -axis, and, consequently, . The condition  is 

obviously fulfilled. If the second line is perpendicular to the first one, then it is parallel to the -axis and, 

consequently, . in this case the condition  is obviously fulfilled. 

Let us now show that if the condition  is fulfilled for the straight lines, then they are either parallel, or 

coincide. 
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Suppose, . Then it follows from the condition  that , since if , then  is also equal to zero 

which is impossible. In this event the condition  may be written in the following way 

 

which expresses the equality of the angles formed by the straight lines with the -axis. Hence, the lines are 

either parallel, or coincide. 

If  (which means that ), then it follows from  that . Thus, both straight lines are parallel to 

the -axis and, consequently, they are either parallel to each other, or coincide. 

Let us show that the condition  is sufficient for the lines to be mutually perpendicular. 

Suppose  and . Then the condition  may be rewritten as follows: 

 

or 

 

This means that the straight lines form a right angle, i.e. they are mutually perpendicular. 

If then  (hence, ), we get from the condition  that . Thus, the first line is parallel to the -

axis, and the second one is parallel to the -axis which means that they are perpendicular to each other. 

The case when  is considered analogously. 

7. 16.7. Exercises 

1. Show that two straight lines intercepting on the coordinate axes segments of equal lengths are either parallel, 

or perpendicular to each other. 

2. Find the parallelism (perpendicularity) condition of the straight lines represented by the equations in 

parametric form: 

 

3. Find the parallelism (perpendicularity) condition for two straight lines one of which is specified by the 

equation 

 

the other being represented parametrically: 

 

4. In a family of straight lines given by the equations 

 

(  is the parameter of the family) find the line parallel (perpendicular) to the straight line 

 

8. 16.8. Basic problems on the straight line 
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Let us form the equation of an arbitrary straight line passing through the point . 

Suppose 

 

is the equation of the required line. Since the line passes through the point , we get 

 

Expressing  and substituting it in the equation , we obtain 

 

It is obvious that, for any  and , the straight line given by this equation passes through the point . 

Let us form the equation of the straight line passing through two given points , . 

Since the straight line passes through the point , its equation may be written in the form 

 

Since the line passes through the point , we have 

 

whence 

 

and the required equation will be 

 

Let us now form the equation of a straight line parallel to the line 

 

and passing through the point . 

Whatever the value of , the equation 

 

represents a straight line parallel to the given one. Let us choose  so that the equation is satisfied for  

and : 

 

Hence 

 

and the required equation will be 

 

Let us form the equation of a straight line passing through the given point  and perpendicular to the 

line 
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For any  the straight line 

 

is perpendicular to the given line. Choosing  so that the equation is satisfied for ,  we find the 

required equation 

 

Let us form the equation of a straight line passing through the given point  at an angle  to the -axis. 

The equation of the straight line can be written in the form 

 

The coefficients  and  are found from the conditions 

 

The required equation is 

 

We conclude with the following assertion: the equation of any straight line passing through the point of 

intersection of two given straight lines 

 

can be written in the form 

 

Indeed, for any  and  which are not both zero, the equation  represents a straight line which passes 

through the point of intersection of the two given lines, since its coordinates obviously satisfy the equation . 

Further, whatever the point  which is different from the point of intersection of the given straight lines, 

the line  passes through the point  when 

 

Consequently, the straight lines represented by  exhaust all the lines passing through the point of intersection 

of the given straight lines. 

9. 16.9. Exercises 

1. Form the equation of a straight line parallel (perpendicular) to the straight line 

 

passing through the point of intersection of the straight lines 

 

2. Under what condition are the points ,  situated symmetrically about the straight line 

 

3. Form the equation of a straight line passing through the point  and equidistant from the points  

and . 
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4. Show that three points ,  and  lie on a straight line if and only if 
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Chapter 17. Vectors 

1. 17.1. Addition and subtraction of vectors 

In geometry, a vector is understood as a directed line segment (Fig. 17.1). The direction of a vector is indicated 

by the arrow. A vector with initial point  and terminal point  is denoted as . A vector can also be denoted 

by a single letter. In printing this letter is given in boldface type , in writing it is given with a bar . 

Figure 17.1. Vector representation. 

 

Two vectors are considered to be equal if one of them can be obtained from the other by translation (Fig. 17.1). 

Obviously, if the vector  is equal to , then  is equal to . If  is equal to , and  is equal to , then  is 

equal to . 

The vectors are said to be in the same direction (in opposite directions) If they are parallel, and the terminal 

points of two vectors equal to them and reduced to a common origin are found on one side of the origin (on 

different sides of the origin). 

Figure 17.2. Vector addition. 

 

The length of the line segment depicting a vector is called the absolute value of the vector. 

A vector of zero length (i.e. whose initial point coincides with the terminus) is termed the zero vector. 

Vectors may be added or subtracted geometrically, i.e. we may speak of addition and subtraction of vectors. 

Namely, the sum of two vectors  and  is a third vector  which is obtained from the vectors  and  (or 

vectors equal to them) in the way shown in Fig. 17.2. 

Figure 17.3. Commutativity of vector addition. 
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Vector addition is commutative, i.e. for any vectors  and  (Fig. 17.3). 

 

Vector addition is associative, i.e. if , ,  are any vectors then 

 

This property of addition, as also the preceding one, follows directly from the definition of the operation of 

addition (Fig. 17.4). 

Figure 17.4. Associativity of vector addition. 

 

Let us mention here that if the vectors  and  are parallel, then the vector  (if it is not equal to zero) is 

parallel to the vectors  and , and is in the same direction with the greater (by absolute value) vector. The 

absolute value of the vector  is equal to the sum of the absolute values of the vectors  and  if they are in 

the same direction, and to the difference of the absolute values if the vectors  and  are in opposite directions. 

Subtraction of vectors is defined as the inverse operation of addition. Namely, the difference of the vectors  

and  is defined as the vector  which, together with the vector , yields the vector . Geometrically it is 

obtained from the vectors  and  (or vectors equal to them) as is shown in Fig. 17.5. 

Figure 17.5. Vector subtraction. 

 

For any vectors  and  we have following inequality 
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(the triangle inequality), geometrycally expressing the fact that in a triangle the sum of its two sides is greater 

than the third side if the vectors are not parallel. This inequality is obviously valid for any number of vectors: 

 

2. 17.2. Exercises 

1. Show that the sum of  vectors reduced to a common origin at the centre of a regular -gon and with the 

terminal points at its vertices is equal to zero. 

2. Three vectors have a common origin  and their terminal points are at the vertices of the triangle . 

Show that 

 

if and only if  is the point of intersection of the medians of the triangle. 

3. Prove the identity 

 

To what geometrical fact does it correspond if  and  are non-zero and non-parallel vectors? 

4. Show that the sign of equality in the triangle inequality takes place only when both vectors are in the same 

direction, or at least one of the vectors is equal to zero. 

5. If the sum of the vectors  reduced to a common origin  is equal to zero and these vectors are not 

coplanar, then whatever is the plane  passing through the point  there can be found vectors  situated on both 

sides of the plane. Show this. 

6. The vector  lies in the -plane; its initial point is  and the terminus is the point , where  

and  are integers not exceeding  and  by absolute value, respectively. Find the sum of all the vectors  

expressing it in terms of the vector with the initial point at  and the terminus at the point . 

7. A finite figure  in the -plane has the origin as the centre of symmetry. Show that the sum of the vectors 

with a common origin and termini at the points whose coordinates are integers of the figure  is equal to zero if 

and only if the origin of coordinates serves as their common initial point. (It is assumed that the figure  has at 

least one point whose coordinates are integers.) 

8. Express the vectors represented by the diagonals of a parallelepiped in terms of the vectors represented by its 

edges. 

3. 17.3. Multiplication of a vector by a number 

Vectors may also be multiplied by a number. The product of the vector  by the number  is defined as the 

vector  the absolute value of which is obtained by multiplying the absolute value of the vector  by the 

absolute value of the number , i.e. , the direction coinciding with the direction of the vector  or 

being in the opposite sense depending on whether  or . If  or , then  is considered to 

be equal to zero vector. 

The multiplication of a vector by a number possesses the associative property and two distributive properties. 

Namely, for any number ,  and vectors ,  
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Let us prove these properties. 

The absolute values of the vectors  and  are the same and are equal to . The directions of 

these vectors either coincide, if  and  are of the same sign, or opposite if  and  have different signs. Hence, 

the vectors  and  are equal by absolute value and are in he same direction, consequently, they are 

equal. If at least one of the numbers ,  or the vector  is equal to zero, then both vectors are equal to zero and, 

hence, they are equal to each other. The associative property is thus proved. 

We are now going to prove the first distributive property: 

 

The equality is obvious if at least one of the numbers ,  or the vector  is equal to zero. Therefore, we may 

consider that , , and  are non-zero. 

If  and  are of the same sign, then the vectors  and  are in the same direction. Therefore, the absolute 

value of the vector  is equal to . The absolute value of the 

vector  is equal to . Thus, the absolute values of the vectors  and 

 are equal and they are in the same direction. Namely, for ,  their directions coincide with 

the direction of , and if ,  they are opposite to . The case when  and  have different signs is 

considered in a similar way. 

Figure 17.6. Distributive law. 

 

Let us prove the second distributive property: 

 

The property is obvious if one of the vectors or the number  is equal to zero. If the vectors  and  are parallel, 

then  can be represented in the form . And the second distributive property follows from the first one. 

Indeed, 

 

Hence 

 

Let  and  be non-parallel vectors, then for  the vector  (Fig. 17.6) represents, on the one hand, 

, and  equal to  on the other. If , then both vectors reverse their directions. 

4. 17.4. Exercises 

1. The vectors  are called linearly independent if there exist no numbers , (at least one of 

which is non-zero) such that 
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Show that two vectors are linearly independent if and only if they are non-zero and non-parallel. 

Show that three vectors are linearly independent when and only when they are non-zero and there is no plane 

parallel to them. 

2. Show that any three vectors lying in one plane are always linearly dependent. 

3. Show that if two vectors  and  in a plane are linearly independent, then any vector  in this plane is 

expressed linearly in terms of  and  

 

The numbers  and  are defined uniquely. 

4. Show that if three vectors , ,  are linearly independent, then any vector  is uniquely expressed in terms 

of these vectors in the form 

 

5. 17.5. Scalar product of vectors 

The angle between the vectors  and  is defined as the angle between the vectors equal to  and , 

respectively, reduced to a common origin (Fig. 17.7). 

Figure 17.7. Scalar product 

 

The scalar product of a vector  by a vector  is defined as the number  which is equal to the product of the 

absolute value of the vectors by the cosine of the angle between them. 

The scalar product possesses the following obvious, properties which follow directly from its definition: 

1. ; 

2. ; 

3. ; 

4. if , then ; 

5. the scalar product of vectors  and  is equal to zero if and only if the vectors are mutually perpendicular or 

one of them is equal to zero. 

The projection of a vector  on a straight line is defined as the vector  whose initial points is the projection of 

the initial point of the vector  and whose terminal point is the projection of the terminal point of the vector . 

Obviously, equal vectors have equal projections, the projection of the sum of vectors is equal to the sum of the 

projections (Fig. 17.8). 

Figure 17.8. Projection of vectors. 
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The scalar product of a vector  by a vector  is equal to the scalar product of the projection of the vector  onto 

the straight line containing the vector  by the vector . The proof is obvious. It is sufficient to note that  and 

 are equal by absolute value and have the same sign. 

The scalar product possesses the distributive property. Namely for any three vectors , ,  

 

The statement is obvious if one of the vectors is equal to zero. Let all the vectors be non-zero. Denoting by , , 

 the projections of the vectors , , and  onto the line containing the vector , we have 

 

Let  be a unit vector parallel to . Then , , and  allow the representations , , . We 

obtain 

 

Whence 

 

and, hence 

 

In conclusion we are going to show that if , ,  are non-zero vectors which are not parallel to one plane, then 

from the equalities 

 

if follows that . 

Indeed, if , then from the above three equalities it follows that the vectors , ,  are perpendicular to , 

and therefore parallel to the plane perpendicular to  which is impossible. 

6. 17.6. Exercises 

1. Let  be the vertices of a regular -gon. Then . Drive from 

this that 

 



 Vectors  

 158  
Created by XMLmind XSL-FO Converter. 

2. Show that if  and  are non-zero and non-parallel vectors, then , the equality 

to zero taking place only if , and . 

7. 17.7. The vector product of vectors 

The vector product of a vector  by a vector  is a third vector  defined in the following way. If at least 

one of the vectors ,  is equal to zero or the vectors are parallel, then . In other cases this vector (by 

its absolute value) is equal to the area of the parallelogram constructed on the vectors  and  as sides and is 

directed perpendicular to the plane containing this parallelogram so that the rotation in the direction from  to  

and the direction of  form a "right-hand screw" (Fig. 17.9). 

Figure 17.9. Vector product of two vectors. 

 

From the definition of the vector product it directly follows: 

1. , 

2. , where  is the angle formed by the vectors  and  ; 

3. . 

The projection of a vector  on a plane is defined as the vector  whose initial point is the projection of the 

initial point of the vector  and whose terminal point is the projection of the terminal point of the vector . 

Obviously, equal vectors have equal projections and the projection of the sum of vectors is equal to the sum of 

the projections (Fig. 17.10). 

Figure 17.10. Projection on a plane. 

 

Suppose we have two vectors  and . Let  denote the projection of the vector  on the plane perpendicular to 

the vector  (Fig. 17.11). Then 
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Figure 17.11. Projection on perpendicular plane. 

 

The proof is obvious. It is sufficient to mention that the vectors  and  have equal absolute values 

and are in the same direction. 

The vector product possesses a distributive property, i.e. for any there vectors , ,  

 

The assertion is obvious if . It is then obvious that the equality  is sufficient to the for the case , 

since in the general case it will then follow the above mentioned property (3). 

Figure 17.12. Distributive law of vector product. 

 

So, let , and let  and  denote the projections of the vectors  and  on the plane perpendicular to the 

vector  (Fig. 17.12). Then the vectors ,  and  are obtained from the vectors , , and 

, respectively, by a rotating through an angle of . Consequently, 

 

And since 

 

we get 
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which was required to be proved. 

Let us mention the following simple identity which is true for any vectors  and : 

 

Indeed, if  is the angle between the vectors  and , then this indentity expresses that 

 

and, consequently, is obvious. 

8. 17.8. Exercises 

1. If the vectors  and  are perpendicular to the vector , then 

 

Show this. 

2. If the vector  is perpendicular to , and the vector  is parallel to the vector , then 

 

Show this. 

3. For an arbitrary vector  and a vector  perpendicular to  

 

Show this. 

4. Show that for any three vectors , ,  

 

5. Find the area of the base of a triangular pyramid whose lateral edges are equal to , the vertex angles being 

equal to , , . 

9. 17.9. The triple product of vectors 

The triple (scalar) product of vectors , ,  is the number 

 

Obviously, the triple product is equal to zero if and only if one of the vectors is equal to zero or all three vectors 

are parallel to one plane. 

The numerical value of the triple product of non-zero vectors , ,  which are not parallel to one plane is equal 

to the volume of the parallelepiped of which the vectors , ,  are coterminal sides (Fig. 17.13). 

Figure 17.13. Meaning of triple product. 
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Indeed, , where  is the are of the base of the parallelepiped constructed on the vectors , , and  

is the unit vector perpendicular to the base. Further,  is equal up to a single to the altitude of the parallelepiped 

dropped onto the mentioned base. Consequently, up to a sign,  is equal to the volume of the parallelepiped 

constructed on the vectors , , and . The triple product possesses the following property 

 

It is sufficient to note that the right-hand and the left-hand members are equal by absolute value and have the 

same sign. From the definition  of the triple product and the property  it follows that an interchange of 

any two factors reverses the sign of the triple product. In particular, the triple product is equal to zero if two 

factors are equal to each other. 

10. 17.10. Exercises 

1. Noting that 

 

derive the identity 

 

2. With the aid of the identity 

 

derive the formula of spherical trigonometry where , ,  are the sides of a triangle on the unit sphere, and  is 

the angle of this triangle opposite to the side . 

3. Derive the identity 
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Chapter 18. Rectangular Cartesian 
Coordinates in Space 

1. 18.1. Cartesian coordinates 

Let us draw from an arbitrary point  in space three straight lines , ,  not lying in one plane, and lay 

off on each of them from the point  three non-zero vectors , ,  (Fig. 18.1). According to Section 17.6, 

any vector  allows a unique representation of the form 

 

The numbers ,   are called the Cartesian coordinates of a point . 

Figure 18.1. Coordinate axes in space 

 

The straight lines , ,  are termed the coordinate axes:  is the -axis,  is the -axis, and  is the 

-axis. The planes , ,  are called the coordinate planes:  is the -plane,  is the -plane, 

and  is the -plane. 

Each of the coordinate axes is divided by the point  (i.e. by the origin of coordinates) into two semi-axes. 

Those of the semi-axes whose directions coincide with the directions of the vectors , ,  are said to be 

positive, the others being negative. The coordinate system thus obtained is called right-handed if , 

and left-handed if . 

Figure 18.2. Coordinates in space 
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Geometrically the coordinates of the point  are obtained in the following way. We draw through the point  a 

plane parallel to the -plane. It intersects the -axis at a point  (Fig. 18.2). Then the absolute value of the 

coordinate  of the point  is equal to the length of the line segment  as measured by the unit length . 

It is positive if  belongs to the positive semi-axis , and is negative if  belongs to the negative semi-axis . 

To make sure of this is sufficient to recall how the coordinates of the vector  relative to the basis , ,  

are determined. The other two coordinates of the point (  and ) are determined by a similar construction. 

If the coordinate axes are mutually perpendicular, and , ,  are the unit vectors, then the coordinates are 

called the rectangular Cartesian coordinates. 

Cartesian coordinates on the plane are introduced in a similar way. Namely, we draw from the point  (i.e. 

from the origin of coordinates) two arbitrary straight lines  and  (the coordinate axes) and lay off on each 

axis (from the point ) a non-zero vector. Thus we obtain the vectors  and . The Cartesian coordinates of 

an arbitrary point  are then determined as the coordinates of the vector  relative to the basis ,  . 

Obviously, if the coordinate axes are mutually perpendicular, and ,  are unit vectors, then the coordinates 

defined in this way coincide with those introduced in Section 15.1 and are called the rectangular Cartesian 

coordinates. 

Below, as a rule, we shall use the rectangular Cartesian coordinates. If otherwise, each case will be supplied 

with a special mention. 

2. 18.2. Exercises 

1. Where are the points in space located if: (a) ; (b) ; (c) ; (d) ; (e) ; 

(f) ? 

2. How many points in space satisfy the following conditions 

 

3. Where are the points in space situated if 

 

4. Let  be a vertex of a parallelepiped, , ,  the vertices adjacent to , i.e. the end-points of the edges 

emanating from . Find the coordinates of all the vertices of the parallelepiped, taking the vertex  for the 

origin and the vertices , ,  for the end-points of the basis vectors. 

5. Find the coordinates of the point into which the point  goes when rotated about the straight line 

joining the point  to the origin through an angle of . The coordinate system is rectangular. 

6. Solve Exercises 5 for an arbitrary . 
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3. 18.3. Elementary problems of solid analytic 
geometry 

Let there be introduced in space Cartesian coordinates  and let  and  be two 

arbitrary points is pace. Find the coordinates of the point  which divides the line segment  in the ratio 

 (Fig. 18.3). 

Figure 18.3. Division of a segment in space 

 

The vectors  and  are in the same direction, and their absolute values are as . Consequently, 

 

or 

 

Whence 

 

ince the coordinates of the points  are the same as the coordinates of the vector , we have 

 

Let the coordinate system be rectangular. Express the distance between the points  and  in terms of their 

coordinates. 

Figure 18.4. The distance of two points 
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The distance between the points  and  is equal to the absolute value of the vector  (Fig. 18.4). We 

have 

 

Whence 

 

Express the area of a triangle in the -plane in terms of the coordinates of its vertices: , 

, and . 

The absolute value of the vector  is equal to twice the area of the triangle ; 

 

Consequently, the area of the triangle 

 

Express the volume of a tetrahedron  in terms of the coordinates of its vertices. 

The triple scalar product of the vectors , ,  is equal (up to a sign) to the volume of the 

parallelepiped constructed on these vectors and, consequently, to six times the volume of the tetrahedron 

. Hence 

 

4. 18.4. Exercises 

1. Find the distance between two points expressed in terms of Cartesian coordinates if the positive semi-axes 

form pairwise the angles , , , and , ,  are unit vectors. 

2. Find the centre of a sphere circumscribed about a tetrahedron with the vertices , , , 

. 

3. Prove that the straight lines joining the mid-points of the opposite edges of a tetrahedron intersect at one 

point. Express the coordinates of this point in terms of the coordinates of the vertices of the tetrahedron. 
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4. Prove that the straight lines joining the vertices of a tetrahedron to the centroids of the opposite faces intersect 

at point. Express its coordinates in terms of the coordinates of the vertices of the tetrahedron. 

5. 18.5. Equations of a surface and a curve in space 

Suppose we have a surface. 

The equation 

 

is called the equation of a surface in implicit form if the coordinates of any point of the surface satisfy this 

equation. And conversely, any three numbers , ,  satisfying the equation  represent the coordinates of one 

of the points of the surface. 

The system of equations 

 

specifying the coordinates of the points of the surfaces as a function of two parameters  is called the 

parametric equation of a surface. 

Eliminating the parameters ,  from the system , we can obtain the implicit equation of a surface. 

Form the equation of an arbitrary sphere in the rectangular Cartesian coordinates . 

Let  be the centre of the sphere, and  its radius. Each point  of the sphere is located at a 

distance  from the centre, and, consequently, satisfies the equation 

 

Conversely, any point  satisfying the equation  is found at a distance  from  and, 

consequently, belong to the sphere. According to the definition, the equation  is the equation of a sphere. 

Form the equation of a circular cylinder with the axis  and radius  (Fig. 18.5). 

Figure 18.5. Exercise 3. 

 

Let us take the coordinate  and the angle  formed by the plane passing through the -axis and the point 

 with the -plane as the parameters , , characterizing the position of the point  on the 

cylinder. We then get 
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which is the required equation of the cylinder in parametric form. 

Squaring the first two equations and adding termwise, we get the equation of the cylinder in implicit form: 

 

Suppose we have a curve in space. The system of equations 

 

is called the equation of a curve in implicit form if the coordinates of each point of the curve satisfy both 

equations. And conversely, any three numbers satisfying both equations represent the coordinates of some point 

on the curve. 

A system of equations 

 

specifying the coordinates of points of the curve as a function of some parameter  is termed the equation of a 

curve in parametric form. 

Two surfaces intersect, as a rule, along a curve. Obviously, if the surfaces are specified by equations 

 and , then the curve along which they intersect is represented by a system of 

equations 

 

Form the equation of an arbitrary circle is space. Any circle can be represented as an intersection of two 

spheres. Consequently, any circle can be specified by a system of equations 

 

As a rule, a curve and a surface intersect at separate points. If the surface is specified by the equation 

, and the curve by the equations  and , then the points of intersection 

of the curve and the surface satisfy the following system of equations: 

 

Solving this system, we find the coordinates of the points of intersection. 
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Chapter 19. A Plane and a Straight 
Line 

1. 19.1. The equation of a plane 

Form the equation of an arbitrary plane in the rectangular Cartesian coordinates . 

Let  be a point in a plane and  a nonzero vector perpendicular to the plane. Then whatever the 

point of the plane  is, the vectors  and  are mutually perpendicular (Fig. 19.1). Hence, 

 

Figure 19.1. Equation of a plane 

 

Let , ,  be the coordinates of the vector  with respect to the basis  , . 

Then, since , it follows from  

 

This is the required equation. 

Thus, the equation of any plane is linear relative to the coordinates , ,  . 

Since the formulas for transition from one Cartesian system of coordinates to another are linear, we may state 

that the equation of a plane is linear in any Cartesian system of coordinates (but not only in a rectangular one). 

Let us now show that any equation of the form 

 

is the equation of a plane. 

Let , ,  be a solution of the given equation. Then 

 

and the equation may be rewritten in the from 
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Let  be a vector with the coordinates , ,  with respect to the basis , , ,  a point with the coordinates 

, ,  and  a point with the coordinates , , . Then the equation  can be written in the equivalent 

form 

 

Whence it follows that all points of the plane passing through the point  and perpendicular to the vector  

(and only they) satisfy the given equation and, consequently, it is the equation of this plane. 

Let us note that the coefficients of , ,  in the equation of the plane are the coordinates of the vector 

perpendicular to the plane relative to the basis  , . 

2. 19.2. Exercises 

1. Form the equation of a plane given two points  and  situated symmetrically about it. 

2. Show that the planes 

 

are parallel (do not intersect). 

3. What is the locus of points whose coordinates satisfy the equation 

 

4. Show that the curve represented by the equations 

 

is a plane one, i.e. all points of this curve belong to a plane. 

5. Show that the three planes specified by the equations 

 

have no points in common if . 

6. Write the equation of the plane passing through the circle of intersection of the two spheres 

 

7. Show that inversion transforms a sphere either into a sphere or into a plane. 

8. Show that the equation of any plane passing through the line of intersection of the planes 

 

can be represented in the from 

 

9. Show that the plane passing through the three given points   is specified by the equation 
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3. 19.3. Special positions of a plane relative to 
coordinate system 

Let us find out the peculiarities of the of the position of a plane relative to coordinate system which take place 

when its equation is of this or that particular form. 

1. , . Vector  (perpendicular to the plane) is parallel to the -axis. The plane is parallel to the -

plane. In particular, it coincides with the -plane if  is also zero. 

2. , . The plane is parallel to the -plane and coincides with it if . 

3. , . The plane is parallel to the -plane and coincides with it if . 

4. , , . Vector  is perpendicular to the -axis: . The plane is parallel to the -axis, in 

particular, it passes through it if . 

5. , , . The plane is parallel to the -axis and passes through it if . 

6. , , . The plane is parallel to the -axis and passes through it if . 

7. . The plane passes through the origin (whose coordinates 0, 0, 0 satisfy the equation of the plane). 

If all the coefficients are non-zero, then the equation may be divided by . Then, putting 

 

we get the equation of the plane the following form: 

 

The numbers , ,  are equal (up to a sign) to the segments intercepted by the plane on the coordinate axes. 

Indeed, the -axis ( , ) is intersected by the plane at point , the -axis at point , and the 

-axis at point . The equation  is called the intercept form of the equation of a plane. 

We conclude with a note that any plane not perpendicular to the -plane  may be specified by an 

equation of the form 

 

4. 19.4. Exercises 

1. Find the conditions under which the plane 

 

intersects the positive semi-axis . 

2. Find the volume of the tetrahedron bounded by the coordinate planes and the plane 

 

if . 
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3. Prove that the points in space for which 

 

are situated inside an octahedron with centre at the origin and the on the vertices coordinate axes. 

4. Given a plane  by the equation in rectangular Cartesian coordinates 

 

Form the equation of the plane  symmetrical to  about the -plane (about the origin ). 

5. Given a family of planes depending on a parameter 

 

Find in this family a plane parallel to the -axis. 

7. In the family of planes 

 

find the plane parallel to the -plane. The parameters of the family are  and . 

5. 19.5. The normal form of the equation of a plane 

If a point  belongs to the plane 

 

then its coordinates satisfy the equation . 

Let us find out what geometrical meaning has the expression 

 

if the point  does not belong to the plane. 

We drop from the point  a perpendicular onto the plane. Let  be the foot of the perpendicular. 

Since the point  lies on the plane, then 

 

Whence 

 

where  is a vector perpendicular to the plane, with the coordinates , , , and  is the distance of the point  

form the plane. 

Thus 

 

is positive on one side of the plane, and negative on the other, its absolute value being proportional to the 

distance of the point  from the plane. The proportionality factor 

 

If in the equation of the plane 
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then 

 

will be equal up to a sign to the distance of the point from the plane. In this case the plane is said to be specified 

by an equation in the normal form. 

Obviously, to obtain the normal form of the equation of a plane , it is sufficient to divide it by 

 

6. 19.6. Exercises 

1. The planes specified by the equations in rectangular Cartesian coordinates 

 

where , have no points in common, hence, they are parallel. Find the distance between these planes. 

2. The plane 

 

is parallel to -axis. Find the distance of the -axis from this plane. 

3. What is the locus of points whose distance to two given planes are in a given ratio? 

4. Form the equations of the planes parallel to the plane 

 

and located at a distance  from it. 

5. Show that the points in space satisfying the condition 

 

are situated between the parallel planes 

 

6. Given are the equations of the planes containing the faces of a tetrahedron and a point  by its coordinates. 

How to find out whether or not the point  lies inside the tetrahedron? 

7. Derive the formulas for transition to a new system of rectangular Cartesian coordinates  if the new 

coordinate plane are specified in the old system by the equations 

 

7. 19.7. Relative position of planes 

Suppose we two planes 
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Find out under which condition these planes are: (a) parallel, (b) mutually perpendicular. 

Since , ,  are the coordinates of vector  perpendicular to the first plane, and , ,  are the coordinates 

of vector  which is perpendicular to the second plane, the planes are parallel if the vectors ,  are parallel, 

i.e. if their coordinates are proportional: 

 

Moreover, this condition is sufficient for parallelism of the planes if they are not coincident. 

For the planes  to be mutually perpendicular it is necessary and sufficient that the mentioned vectors  and 

 are mutually perpendicular, which for non-zero vectors is equivalent to the condition 

 

Let the equations  specify two arbitrary planes. Find the angle made by these planes. 

The angle  between the vectors  and  is equal to one the angles formed by planes and is readily found. We 

have 

 

Whence 

 

8. 19.8. Equations of the straight line 

Any straight line can be specified as an intersection of two planes. Consequently, any straight line can be 

specified by the equations 

 

the first which represents one plane and the second the other. Conversely, any compatible system of two such 

independent equations represents the equations of a straight line. 

Let  be fixed point on a straight line,  an arbitrary point of the straight line, and 

 a non-zero vector parallel to the straight line (Fig. 19.2). Then the vectors  and  are parallel and, 

consequently, their coordinates are proportional, i.e. 

 

Figure 19.2. Equations of a line i space 
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This form of the equation of a straight line is called canonical. It represents a particular case , since it allows 

an equivalent form 

 

corresponding to . 

Suppose a straight line is represented by the equations . Let us form its equation in canonical form. For this 

purpose it is sufficient to find a point  on the straight line and a vector  parallel to this line. 

Any vector  parallel to the straight line will be parallel to either of the planes , and conversely. 

Consequently, , ,  satisfy the equations 

 

Thus, any solution of the system  may be taken as , ,  for the canonical equation of the straight line and 

any solution of  as the coefficients , , , for instance 

 

From the equation of a straight line in canonical form we can derive its equations in parametric form. Namely, 

putting the common value of the three ratios of the canonical equation equal to , we get 

 

which are the parametric equations of a straight line. 

Let us find out what are the peculiarities of the position of a straight line relative to the coordinate system if 

some of the coefficients of the canonical equation are equal to zero. 

Since the vector  is parallel to the straight line, with  the line is parallel to the -plane 

, with  the line is parallel to the -plane, and with  it is parallel to the -plane. 

If  and , then the straight line is parallel to the -axis (  is parallel to ; if  and , then it is 

parallel to the -axis, and if  and , then the line is parallel to the -axis. 

We conclude with a note that a straight line may be specified by the equations of the form  and  in 

Cartesian coordinates in general (and not only in its particular case, i.e. in rectangular Cartesian coordinates). 

9. 19.9. Exercises 
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1. Under what condition does a straight line represented by the equation in canonical form  intersect the -

axis ( -axis, -axis)? Under what condition is it parallel to the plane ? 

2. Show that the locus of points equidistant from three pairwise non-parallel planes is a straight line. 

3. Show that the locus of points equidistant from the vertices of a triangle is a straight line. Form its equations 

given the coordinates of the vertices of the triangle. 

4. Show that through each point of the surface 

 

there pass two straight lines entirely lying on the surface. 

5. If the straight lines specified by the equations 

 

and 

 

intersect, then 

 

Show this. 

10. 19.10. Basic problems of straight lines and planes 

Form the equation of an arbitrary plane passing through the point . 

Any plane is specified by an equation of the form 

 

Since the point  belongs to the plane, then 

 

Hence the equation of the required plane is 

 

or 

 

Obviously, for any , ,  this equation is satisfied by the point . 

Form the equation of an arbitrary straight line passing through the point . 

The required equation is 
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Indeed, this equation specifies a straight line passing through the point  whose coordinates obviously 

satisfy the equation. Taking arbitrary (not all equal to zero) values for , , , we obtain a straight line of an 

arbitrary direction. 

Form the equation of a straight line passing through two given points  and . 

The equation of the straight line may be written in the form 

 

Since the second points lies on the line, then 

 

This allows us to eliminate , , , and we get the equation 

 

Form the equation of a plane passing through three points , , , not 

lying on a straight line. 

Let  be an arbitrary point belonging to the required plane. The three vectors 

 

lie in one plane. Consequently, 

 

and we get the required equation 

 

Form the equation of a plane passing through a given point  and parallel to the plane 

 

The required equation is 

 

Indeed, this plane passes through the given point and is parallel to the given plane. 

Form the equation of a straight line passing through a given point  parallel to a given straight line 

 

The required equation is 

 

A straight line passing through a point  and perpendicular to a plane 
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is specified by the equation 

 

A plane perpendicular to a straight line 

 

passing through a point , is specified by the equation 

 

Let us form the equation of a plane passing through a point  and parallel to the straight lines 

 

Since the vector , and  are parallel to the plane, their vector product is perpendicular to the 

plane. Hence the equation is 

 

which can be rewritten in a compact form: 
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